Impact of sound stimulation during different sleep stages in patients with tinnitus

Authors

DOI:

https://doi.org/10.3989/loquens.2018.053

Keywords:

central auditory processing, sleep spindles, sleep stages N2, N3, REM

Abstract


It is known that auditory information is continuously processed both during wakefulness and sleep. Consistently, it has been shown that sound stimulation mimicking tinnitus during sleep decreases the intensity of tinnitus and improves the patients’ quality of life. The mechanisms underlying this effect are not known. To begin to address this question, eleven patients suffering from tinnitus were stimulated with sound mimicking tinnitus at different sleep stages; 4 were stimulated in N2, 4 in stage N3 (slow waves sleep) and 3 in REM sleep (stage with Rapid Eyes Movements). Patients’ sleep stage was monitored through polysomnography, for sound stimulation application. Tinnitus level reported by subjects were compared the days before and after stimulation and statistically analyzed (paired Student t test). All patients stimulated at stage N2 reported significantly lower tinnitus intensity the day after stimulation, while none stimulated during stage N3 and only one out of three stimulated during REM sleep showed changes. These results are consistent with studies showing that sound stimulation during N2 (sleep stage with spindles) changes power spectrum and coherence of electroencephalographic signals, and suggest that the N2 sleep stage is a critical period for reducing tinnitus intensity using this therapeutic strategy, during which auditory processing networks are more malleable by sound stimulation.

Downloads

Download data is not yet available.

References

Andersson, G., Lyttkens, L., Hirvela, C., Furmark, T., Tillfors, M., & Fredrikson, M. (2000). Regional cerebral blood flow during tinnitus: A PET case studied with lidocaine and auditory stimulation. Acta Oto-Laringologica, 120(8), 967–972. https://doi.org/10.1080/00016480050218717

Aristotle (trans. 1955). In W. D. Ross (Ed.), Parva naturalia. De divinatione per somnum. Oxford: Clarendon Press.

Bastuji, H., & García-Larrea, L. (2005). Human auditory information processing during sleep assessed with evoked potentials. In P. L. Parmeggiani & R. A. Velluti (Eds.), The Physiologic Nature of Sleep (pp. 509–534). London: Imperial College Press. https://doi.org/10.1142/9781860947186_0023

Burton, S. A., Harsh, J. R., & Badia, P. (1988). Cognitive activity in sleep and responsiveness to external stimuli. Sleep, 11, 61–68. PMid:3363271

Cipolli, C. (2005). Sleep and memory. The Physiologic Nature of Sleep (pp. 601–629). London: Imperial College Press. https://doi.org/10.1142/9781860947186_0026

Cipolli, C., Fagioli, I., Baroncini, P., Fumai, A., Marchiò, B., & Sancini, M. (1988). The thematic continuity in mental experiences in REM and NREM sleep. International Journal of Psychophysiology, 6, 307–313. https://doi.org/10.1016/0167-8760(88)90018-9

Cipolli, C., Fagioli, I., Mazzetti, M., & Tuozzi, G. (2005). Consolidation effect of the processing of declarative knowledge during human sleep: Evidence from long-term retention of interrelated contents of mental sleep experiences. Brain Research Bulletin, 65, 97–104. https://doi.org/10.1016/j.brainresbull.2004.10.014 PMid:15763174

Cutrera, R., Pedemonte, M., Vanini, G., Goldstein, N., Savorini, D., Cardinali, D. P., & Velluti, R. A. (2000). Auditory deprivation modifies biological rhythms in the golden hamster. Archives Italiennes de Biologie, 138, 285–293. PMid:11116570

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Natural Revues Neuroscience, 11, 114–126. https://doi.org/10.1038/nrn2762 PMid:20046194

Drexler, D., López-Paullier, M., Rodio, S., González, M., Geisinger, D., & Pedemonte, M. (2016). Impact of reduction of tinnitus intensity on patients' quality of life. International Journal of Audiology, 55(1), 11–19. https://doi.org/10.3109/14992027.2015.1072772 PMid:26328778

Edeline, J. M., Dutrieux, G., Manunta, G., & Hennevin, E. (2001). Diversity of receptive field changes in auditory cortex during natural sleep. European Journal of Neuroscience, 14, 1865–1880. https://doi.org/10.1046/j.0953-816x.2001.01821.x PMid:11860482

Erwin, R., & Buchwald, J. (1986). Midlatency auditory evoked responses: Differential effects of sleep in the human. Electroencephalography and Clinical Neurophysiology, 65, 383–392. https://doi.org/10.1016/0168-5597(86)90017-1

Formby, D. (1967). Maternal recognition of infant's cry. Developmental Medicine and Child Neurology, 9, 293–298. https://doi.org/10.1111/j.1469-8749.1967.tb02271.x

Gambini, J. P., Velluti, R. A., & Pedemonte, M. (2002). Hippocampal theta rhythm synchronizes visual neurons in sleep and waking. Brain Research, 926, 137–141. https://doi.org/10.1016/S0006-8993(01)03321-2

De Gennaro, L., Ferrara, M., & Bertini, M. (2000). The spontaneous K-complex during stage 2 sleep: Is it the "forerunner" of delta waves? Neuroscience Letters, 291, 41–43. https://doi.org/10.1016/S0304-3940(00)01366-5

Halász, P. (1988). Onformation processing during sleep. In W. P. Koella, F. Obál, H. Schulz, & P. Visser (Eds.), Sleep'86 (pp: 77–78). Stuttgart: Fischer.

Halász, P., Terzano, M., Parrino, L., & Bodizs, R. (2004). The nature of arousal in sleep. Journal of Sleep Research, 13, 1–23. https://doi.org/10.1111/j.1365-2869.2004.00388.x PMid:14996030

Heijneman, K. M., De Kleine, E., & Van Dijk, P. (2012). A randomized double-blind crossover study of phase-shift sound therapy for tinnitus. Otolaryngology–Head and Neck Surgery (USA), 147(2), 308–315. https://doi.org/10.1177/0194599812442615 PMid:22467284

Hoare, D. J., Searchfield, G. D., El Refaie, A., & Henry J. A. (2014). Sound therapy for tinnitus management: Practicable options. Journal of the American Academy of Audiology, 25, 62–75. https://doi.org/10.3766/jaaa.25.1.5 PMid:24622861

Hobson, J. A. (1990). Sleep and dreaming. Journal of Neuroscience, 10, 371–382. https://doi.org/10.1523/JNEUROSCI.10-02-00371.1990 PMid:2406379

Issa, E. B., Wang, X. (2008). Sensory responses during sleep in primate primary and secondary auditory cortex. Journal of Neuroscience, 28, 14467–14480. https://doi.org/10.1523/JNEUROSCI.3086-08.2008 PMid:19118181 PMCid:PMC3844765

Jastreboff, P. J. (1990). Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neuroscience Research, 8, 221–254. https://doi.org/10.1016/0168-0102(90)90031-9

Jastreboff, P. J. (1995). Tinnitus as a phantom perception: theories and clinical implications. In J. A. Vernon & A. R. Møller (Eds.), Mechanisms of tinnitus (73–93). Boston, MA: Allyn & Bacon. PMid:7775282

Jenkins, J. K., & Dallenbach, K. M. (1924). Obliviscence during sleep and waking. American Journal of Psychology, 35, 605–612. https://doi.org/10.2307/1414040

Jones, B. E. (1991). Paradoxical sleep and its chemical /structural substrates in the brain. Neuroscience, 40, 637–656. https://doi.org/10.1016/0306-4522(91)90002-6

Kemp, I. R., Kaada, B. R. (1975). The relation of hippocampal theta activity to arousal, attentive behaviour and somato-motor movements in unrestrained cats. Brain Research, 95, 323–342. https://doi.org/10.1016/0006-8993(75)90110-9

Kroener-Herwig, B., Biesinger, E., Gerhards, F., Goebel, G., Verena-Greimel, K, & Hiller, W. (2000). Retraining Therapy for chronic tinnitus. A critical analysis of its status. Scandinavian Audiology, 29, 67–78. https://doi.org/10.1080/010503900424471 PMid:10888343

Kusatz, M., Ostermann, T., & Aldridge, D. (2005). Auditory stimulation therapy as an intervention in subacute and chronic tinnitus: A prospective observational study. International Tinnutis Journal, 11(2), 163–169.

Liberman, T., Velluti, R. A., & Pedemonte, M. (2009). Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs. Brain Research, 1298, 70–77. https://doi.org/10.1016/j.brainres.2009.08.061 PMid:19716364

Maquet, P. A. A., Sterpenich, V., Albouy, G., Dang-bu, T., Desseilles, M., Boly, M., et al. (2005). Brain imaging on passing to sleep. The Physiologic Nature of Sleep (pp. 123–138). London: Imperial College Press. https://doi.org/10.1142/9781860947186_0006

Marshall, L., Helgadottir, H., Mölle, M., Born, & J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444, 610–613. https://doi.org/10.1038/nature05278 PMid:17086200

Maury, A. (1878). Le sommeil et les rêves (4th ed.). Paris: Didier, pp. 61–162.

McCarley, R. W., & Hoffman, E. (1981). REM sleep dreams and the activation synthesis hypothesis. American Journal of Psychiatry, 138, 904–912. https://doi.org/10.1176/ajp.138.7.904 PMid:7258349

Melcher, J. R., Sigalovsky, I. S., Guinan, J. J. Jr., & Levine, R. A. (2000). Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. Journal of Neurophysiology, 83(2), 1058–1072. https://doi.org/10.1152/jn.2000.83.2.1058 PMid:10669517

Mölle, M., Bergmann, T. O., Marshall, L., & Born, J. (2011). Fast and slow spindles during the sleep slow oscillation: Disparate coalescence and engagement in memory processing. Sleep, 34, 1411–1421. https://doi.org/10.5665/SLEEP.1290 PMid:21966073 PMCid:PMC3174843

Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur lehre vom Gedächtniss. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 1, 1–300.

Ngo, H.-V. V., Claussen, J. C., Born, J., & Mölle, M. (2013). Induction of slow oscillations by rhythmic acoustic stimulation. Journal of Sleep Research, 22, 22–31. https://doi.org/10.1111/j.1365-2869.2012.01039.x PMid:22913273

Nore-a, A. J., & Eggermont, J. J. (2005). Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. Journal of Neuroscience, 25, 699–705. https://doi.org/10.1523/JNEUROSCI.2226-04.2005 PMid:15659607

Osterhammel, P., Shallop, J., & Terkildsen, K. (1985). The effects of sleep on the auditory brainstem response (ABR) and the middle latency response (MLR). Scandinavian Audiology, 14, 47–50. https://doi.org/10.3109/01050398509045921 PMid:4059844

Pantev, C., Okamoto, H., & Teismann, H. (2012). Tinnitus: The dark side of the auditory cortex plasticity. Annals of the New York Academy of Science, 1252(1), 253–258. https://doi.org/10.1111/j.1749-6632.2012.06452.x PMid:22524367

Pedemonte, M. (2018). Chapter 7. Tinnitus treatment during sleep. In Velluti, R. A. (Ed.), The auditory system in sleep (2nd ed.) (pp. 161–184). Elsevier-Academic Press, United Kingdom. https://doi.org/10.1016/B978-0-12-810476-7.00007-5

Pedemonte, M., Drexler, D., Rodio, S., Geisinger, D., Bianco, A., Pol-Fernandes, D., & Bernhardt V. (2010). Tinnitus treatment with sound stimulation during sleep. The International Tinnitus Journal, 16, 37–43.

Pedemonte, M., Gambini, J. P., & Velluti, R. A. (2005). Novelty-induced correlation between visual neurons and the hippocampal theta rhythm in sleep and wakefulness. Brain Research, 1062, 9–15. https://doi.org/10.1016/j.brainres.2005.07.069 PMid:16248987

Pedemonte, M., Pe-a, J. L., Morales-Cobas, G., & Velluti, R. A. (1994). Effects of sleep on the responses of single cells in the lateral superior olive. Archives Italiennes de Biologie, 132, 165–178. PMid:7979862

Pedemonte, M., Pe-a, J. L., Torterolo, P., Velluti, R. A. (1996a). Auditory deprivation modifies sleep in guinea-pig. Neuroscience Letters, 223,1–4. https://doi.org/10.1016/S0304-3940(97)13392-4

Pedemonte, M., Pe-a, J. L., & Velluti, R. A. (1996b). Firing of inferior colliculus auditory neurons is phase-locked to the hippocampus theta rhythm during paradoxical sleep and waking. Experimental Brain Research, 112, 41–46. https://doi.org/10.1007/BF00227176 PMid:8951405

Pedemonte, M., Pérez-Perera, L., Pe-a, J. L., & Velluti, R. A. (2001). Auditory processing during sleep: Correlation of cortical unitary activity with hippocampus theta Rhythm. Sleep Research Online, 4, 52–57.

Pedemonte, M., Testa, M., Díaz, M., & Suárez-Bagnasco, D. (2014). The impact of sound on electroencephalographic waves during sleep in patients suffering from tinnitus. Sleep Science, 7(3), 143–151. https://doi.org/10.1016/j.slsci.2014.09.011 PMid:26483919 PMCid:PMC4559594

Pe-a, J. L., Pedemonte, M., Ribeiro, M. F., & Velluti, R. A. (1992). Single unit activity in the guinea-pig cochlear nucleus during sleep and wakefulness. Archives Italiennes de Biologie, 130, 179–189.

Pe-a, J. L., Pérez-Perera, L., Bouvier, M., & Velluti, R. A. (1999). Sleep and wakefulness modulation of the neuronal firing in the auditory cortex of the guinea-pig. Brain Research, 816, 463–470. https://doi.org/10.1016/S0006-8993(98)01194-9

Pompeiano, O. (1970). Mechanisms of sensory-motor integration during sleep. Progress in Physiological Psychology, 3, 1–179.

Portas, C., Krakow, K., Allen, P., Joseph, O., Armony, J.L., & Frith, C.D. (2000). Auditory processing across the sleep–wake cycle: Simultaneous EEG and fMRI monitoring in humans. Neuron, 28, 991–999. https://doi.org/10.1016/S0896-6273(00)00169-0

Reavis, K. M., Rothholtz, V. S., Tang, Q., Carroll, J. A., Djalilian, H., & Zeng, F. G. (2012). Temporary suppression of tinnitus by modulated sounds. Journal of the Association for Research in Otolaryngology, 13(4), 561–571. https://doi.org/10.1007/s10162-012-0331-6 PMid:22526737 PMCid:PMC3387310

Riedner, B. A., Hulse, B. K., Murphy, M. J., Ferrarelli, F., & Tononi, G. (2011). Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Progress in Brain Research, 193, 201–218. https://doi.org/10.1016/B978-0-444-53839-0.00013-2 PMid:21854964 PMCid:PMC3160723

Schaette, R., König, O., Hornig, D., Gross, M., & Kempter, R. (2010). Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range. Hearing Research, 269, 95–101. https://doi.org/10.1016/j.heares.2010.06.022 PMid:20619332

Steriade, M. (1997). Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex, 7, 583–604. https://doi.org/10.1093/cercor/7.6.583 PMid:9276182

Steriade, M, Gloor, P., Llinas, R. R., Lopes da Silva, F. H., & Mesulam, M. M. (1990). Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481–508. https://doi.org/10.1016/0013-4694(90)90001-Z

Theodoroff, S. M., McMillan, G. P., Zaugg, T. L., Cheslock, M., Roberts, C., & Henry, J. A. (2017). Randomized controlled trial of a novel device for tinnitus sound therapy during sleep. American Journal of Audiology, 26, 543–554. https://doi.org/10.1044/2017_AJA-17-0022 PMid:29090311

Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10, 49–62. https://doi.org/10.1016/j.smrv.2005.05.002 PMid:16376591

Velluti, R. A. (1997). Interactions between sleep and sensory physiology. A review. Journal of Sleep Research, 6, 61–77. https://doi.org/10.1046/j.1365-2869.1997.00031.x PMid:9377536

Velluti, R. A. (2018). The auditory system in sleep (2nd ed.). Elsevier-Academic Press, United Kingdom.

Velluti, R. A., Pedemonte, M., Suárez, H., Bentancor, C., & Rodriguez-Servetti, Z. (2010). Auditory input modulates sleep: An intra-cochlear implanted human model. Journal of Sleep Research, 19(4), 585–590. https://doi.org/10.1111/j.1365-2869.2010.00829.x PMid:20408927

Vermeire, K., Heyndrickx, K., De Ridder, D., & Van De Heyning, P. (2007). Phase-shift tinnitus treatment: An open prospective clinical trial. B-ENT, 3(7), 65–69. Davis, P. B. PMid:18225610

Vinogradova, O. S. (2001). Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11, 578–598. https://doi.org/10.1002/hipo.1073 PMid:11732710

Wallenstein, G. W., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neuroscience, 21, 317–323. https://doi.org/10.1016/S0166-2236(97)01220-4

Wazen, J. J., Daugherty, J., Pinsky, K., Newman, C. W., Sandridge, S., Batista, R., Ramos, P., & Luxford, W. (2011). Evaluation of a customized acoustical stimulus system in the treatment of chronic tinnitus. Otology & Neurotology, 32(4), 710–716. https://doi.org/10.1097/MAO.0b013e318217d459 PMid:21451428

Wilde, R. A., Steed, L., & Hanley, P. J. (2008). Treatment of tinnitus with a customized acoustic neural stimulus: A controlled clinical study. Ear, Nose & Throat Journal, 87(6), 330–339. PMid:18561116

Published

2018-12-30

How to Cite

Pedemonte, M., Díaz, M., Medina-Ferret, E., & Testa, M. (2018). Impact of sound stimulation during different sleep stages in patients with tinnitus. Loquens, 5(2), e053. https://doi.org/10.3989/loquens.2018.053

Issue

Section

Articles