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ABSTRACT: Automatic Speaker Recognition systems show interesting properties, such as speed of processing or
repeatability of results, in contrast to speaker recognition by humans. But they will be usable just if they are reliable.
Testability, or the ability to extensively evaluate the goodness of the speaker detector decisions, becomes then critical.
In the last 20 years, the US National Institute of Standards and Technology (NIST) has organized, providing the
proper speech data and evaluation protocols, a series of text-independent Speaker Recognition Evaluations (SRE).
Those evaluations have become not just a periodical benchmark test, but also a meeting point of a collaborative com-
munity of scientists that have been deeply involved in the cycle of evaluations, allowing tremendous progress in a
specially complex task where the speaker information is spread across different information levels (acoustic, prosodic,
linguistic…) and is strongly affected by speaker intrinsic and extrinsic variability factors. In this paper, we outline
how the evaluations progressively challenged the technology including new speaking conditions and sources of vari-
ability, and how the scientific community gave answers to those demands. Finally, NIST SREs will be shown to be
not free of inconveniences, and future challenges to speaker recognition assessment will also be discussed.
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RESUMEN: Evaluando los sistemas automáticos de reconocimiento de locutor: Panorama de las evaluaciones NIST
de reconocimiento de locutor (1996-2014).- Los sistemas automáticos de reconocimiento de locutor son críticos para
la organización, etiquetado, gestión y toma de decisiones sobre grandes bases de datos de voces de diferentes locutores.
Con el fin de procesar eficientemente tales cantidades de información de voz, necesitamos sistemas muy rápidos y, al
no estar libre de errores, lo suficientemente fiables. Los sistemas actuales son órdenes de magnitud más rápidos que
tiempo real, permitiendo tomar decisiones automáticas instantáneas sobre enormes cantidades de conversaciones. Pero
tal vez la característica más interesante de un sistema automático es la posibilidad de ser analizado en detalle, ya que
su rendimiento y fiabilidad puede ser evaluada de manera ciega sobre cantidades enormes de datos en una gran diver-
sidad de condiciones. En los últimos 20 años, el Instituto Nacional de Estándares y Tecnología (NIST) de EE. UU. ha
organizado, proporcionando los datos de voz y protocolos de evaluación adecuada, una serie de evaluaciones de reco-
nocimiento de locutor independiente del texto. Esas evaluaciones se han convertido no sólo en una prueba comparativa
periódica, sino también en punto de encuentro de una comunidad colaborativa de científicos que han estado profunda-
mente involucrados en el ciclo de evaluaciones, lo que ha permitido un enorme progreso en una tarea especialmente
compleja en la que la información individualizadora del locutor se encuentra dispersa en diferentes niveles de información
(acústica, prosódica, lingüística...) y está fuertemente afectada por factores de variabilidad intrínsecos y extrínsecos
al locutor. En este artículo se describe cómo las evaluaciones desafiaron progresivamente la tecnología existente, in-
cluyendo nuevas condiciones de habla y fuentes de variabilidad, y cómo la comunidad científica fue dando respuesta
a dichos retos. Sin embargo, estas evaluaciones NIST no están libres de inconvenientes, por lo que también se discutirán
los retos futuros para la evaluación de tecnologías de locutor.
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1. INTRODUCTION

Themassive presence and exponential growth of mul-
timedia data,with audio sources varying fromcall centers,
mobile phones and broadcast data (radio, TV, podcasts…)
to individuals producing voice or video messages with
speakersandconversationsofall types inanunconceivable
rangeofsituationsandspeakingconditions,makesspeaker
recognitionapplicationscritical for theorganization, label-
ing, management and decisionmaking over this big audio
data. Inorder toefficientlyprocesssuchamountsof speech
information, we need extremely fast and reliable enough
(being not error free) automatic speaker recognition sys-
tems. Current systems are orders of magnitude faster than
real time, allowing instantaneous automatic decisions (or
informed opinions) on huge amounts of conversations.
Moreover, being built with well-known signal processing
and pattern recognition algorithms, they are transparent,
avoiding subjective components in the decision process
(in contrast to human speaker recognition) and allowing
publicscrutinyofeverymoduleof thesystem,and testable,
as their performance and claimed reliability can be blindly
evaluatedonmassiveamountsofknowndatawhereground
truth (the speaker identity) is available in a great diversity
of conditions (Gonzalez-Rodriguez, Rose, Ramos,
Toledano, & Ortega-Garcia, 2007).

However, evaluating a speaker recognition system
is not an easy task. The speaker individualizing informa-
tion is spread across different information levels, and
each of them is affected in different ways by speaker
intrinsic and extrinsic sources of variability, such as the
elapsed time between recordings under comparison,
differences in acquisition and transmission devices
(microphones, telephones, GSM/IP coding...), noise and
reverberation, emotional state of the speaker, type of
conversation, permanent and transient health conditions,
etc. When two given recordings are to be compared, all
those factors are empirically combined in a specific and
difficult to emulate way, so controlling and disentangling
themwill be critical for the proper evaluation of systems.
Fortunately, the US NIST (National Institute of Stan-
dards and Technology) series of Speaker Recognition
Evaluations (SRE) have provided for almost two decades
a challenging and collaborative environment that has
allowed text-independent speaker recognition to make
remarkable progress. For every new evaluation, and
according to the results and expectations from the previ-
ous one, NIST balanced the suggestions from partici-
pants and the priorities of their sponsors to compound
a new evaluation, where new speech corpora were de-
signed and collected under new conditions, development
and test data was prepared and distributed, and final
submissions from participants were analyzed, to be fi-
nally compared and discussed in a public workshop open
to participants in the evaluation. This cycle of innovation
adds a tremendous value to participants, whose technol-
ogy is challenged in every new evaluation, demanding
enormous progress in order to cope with new demands,
and final solutions being publicly discussed and scruti-

nized with other participants, creating an environment
for mutual development and enrichment.

This paper, without going into deep technical details
butwithproperselectedreferencesfortheinterestedreader,
pretendstobeaneasy-to-readguidedtourover thedifferent
technologies and tasks that have been evolving jointly in
the last two decades in the challengingworld of text-inde-
pendent speaker recognition. Trying to do so, the paper is
organized as follows. After this introduction, section 2 de-
picts the different configurations and options available to
build anddeployanautomatic speaker recognition system.
Section 3 deals with the evaluation of the goodness of a
given speaker recognizer, from the design and preparation
ofreferencedatatocostfunctionsandapplication-indepen-
dentassessmentofspeakerdetectors.Thenextfoursections
perform an historic overview of technologies and evalua-
tions, from early short-term spectral systems and later
higher-level systems to factor analysis and state-of-the-art
i-vector systems, with the corresponding evaluations that
challenged eachof these systems. Finally,we extract some
conclusions to summarize the paper and discuss relevant
issues.

2. FLAVOURS IN AUTOMATIC SPEAKER
RECOGNITION

This section gives an introductory outlook of the
different architectures and speaker information extrac-
tion components that can be used to build an automatic
system. Interested readers will find in each section a
selection of references that allows going into further
details in the different aspects addressed in the paper.

2.1. Text-dependent and text-independent systems

Automatic systems can be divided into two big
groups, depending on the level of dependence with the
pronounced message in the speech under comparison.
Text-independent systems are focused on the different
sounds produced by the speaker, independently from
the language being spoken allowing cross-language
speaker comparisons, and the message being pro-
nounced, allowing comparisons of totally different utter-
ances with different messages, speaking contexts and
conditions, etc. Those systems allow comparisons of
any two given utterances, but in order to be reliable they
require significant amounts of spoken material (usually
more than 30 seconds per utterance) and roughly similar
acoustic and speaking conditions. The higher the mis-
match between the conditions from one recording to the
other (in manner of speaking, recording channel and
acoustic noise, time lapse between recordings, etc.), the
greater the degradation in performance. Those systems,
extensively reviewed in Kinnunen and Li (2010), will
be the subject of analysis in detail in this paper.

On the other side, text-dependent systems require
the two utterances under comparison to pronounce ex-
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actly the same words or phrases. At the expense of this
constraint, by controlling the linguistic variability (same
set of prototype sounds to be compared and in the same
sequential order) they can obtain excellent levels of re-
liability with very short phrases/passwords from coop-
erative speakers. Text-dependent systems are especially
suited to biometric access control applications, such as
remote phone banking or customer phone platforms,
where a spoken username and/or password are required.

One of the vulnerabilities of those systems is fraud-
ulent recording of the spoken password, which can be
avoided by random prompts to the speaker. In that case,
the systemmust be flexible enough to build in real-time
composite phrase models of the speaker from previously
trained basic linguistic units (digits, phones, di-
phones…). In this way, the speaker is verified with a
new phrase he has never recorded before every time he
or she accesses the system. Details on performance
levels with different architectures and design options
can be found in the excellent review chapter on text-
dependent systems in Hébert (2008).

Recently, a renewed interest in those systems has been
observed, as shown by theMOBIO evaluation (Khoury et
al., 2013) for voice access control inmobile environments
whose results were presented at the International Confer-
ence on Biometrics (ICB) 2013 in Madrid, and in an IN-
TERSPEECH 2014 special session entitled “Text-depen-
dent speaker verificationwith short utterances”whichwill
be focused on “robustness with respect to duration and
modeling of lexical information” (Larcher, Aronowitz,
Lee, & Kenny, 2014). Interestingly, the organizers have
madepubliclyavailabilitytheRSR2015database,including
150 hours of data recorded from 300 speakers in mobile
environments, which allow text-dependent system design
andevaluation indifferent configurations, andcomparison
of results with other systems using the same database
(Larcher, Lee, Ma, & Li, 2014).

2.2. Multi-level extraction of the individualizing
information

From the particular realization of speech sounds to
the production of spoken language (selection of words,
phrase formulation, etc.), going through particular
prosodic contours or voice qualities, every speech act
embeds information from the speaker at multiple levels.
While most automatic systems rely on short-term cep-
stral-like features—MFCC (Davis & Mermelstein,
1980), RASTA-PLP (Hermansky & Morgan, 1994),
etc.—which will be the main information extraction
techniques throughout this paper, there is a wide corpus
of research in non-cepstral features.

Voice-source features representing the glottal infor-
mation in the speech signal have also been extracted
with success and used to improve current performance
of cepstral systems (Plumpe, Quatieri, & Reynolds,
1999). However, the difficulty in correctly extracting
those glottal and source features has resulted in limited

improvements of performance when combined when
cepstral-like features. Fortunately, a recent software
repository known as COVAREP (Degottex, Kane,
Drugman, Raitio, & Scherer, 2014) provides state-of-
the-art open-source glottal and voice source extraction
tools whichwill surely help to improve their contribution
to global performance.

In order to capture the characteristic coarticulation
of the speakers in 100 to 500 milliseconds window
lengths, different spectro-temporal features have been
explored with success. Among them we can highlight
the representation of the spectral variations as a function
of time as frequency filtered spectral energies (Hernando
& Nadeu, 1998) or frequency modulation features
(Thiruvaran, Ambikairajah, & Epps, 2008). Recently,
the trajectories of formant frequencies and bandwidths
within specific linguistic units (phones, diphones, tri-
phones, syllables andwords) have been exploited obtain-
ing a compact fixed-size representation of the formant
dynamics per linguistic unit, obtaining good speaker
recognition results just from formants in the NIST 06
framework (Gonzalez-Rodriguez, 2011).

Prosodic information contains characteristic speaker
features embedded in pitch and energy contours, which
can be tokenized (a discretization of the joint pitch-en-
ergy tendencies) and modeled through n-gram counts
(Adami, Mihaescu, Reynolds, & Godfrey, 2003). With
the help of an automatic speech recognition system,
which provides precise phone boundaries in the input
utterance, syllable, phone and state-in-phone durations
can also be modeled (Shriberg, 2007). Recently, Kock-
mann, Ferrer, Burget, Shriberg, and Černocký (2011)
have integrated state-of-the-art i-vectors (see Section
6.2) with prosodic information with important improve-
ments over spectral-only systems in very complex tasks.

A statistical approach can also be used to extract id-
iolectal features from the speaker, looking for the fre-
quency of use of bi-grams and tri-grams of phone, sylla-
bles or words (Doddington, 2001). This information,
which combines extremely well with short-term cepstral
approaches, becomes really useful only when large
amounts of voice from different conversations of the
speaker are available, as e.g., eight or sixteen five-
minute two-sided conversations in NIST 04, which gives
an average of 20 or 40 minutes per speaker. This mini-
mum duration limit can be a severe drawback for some
applications, but there are situations when those amounts
of speech or much more are available, as for instance
frequent users of customer call centers, or weeks or
months of wiretapping, where hours of conversations
are available in plenty of criminal investigations.

We have to highlight that some of the non-cepstral
methods described make use of phone, syllable or
word transcriptions automatically provided by Auto-
maticSpeechRecognition (ASR)systems.Those time-
aligned labels are then used for phone, diphone, tri-
phone, syllable or word selection and/or conditioning
of specific speech segments including relevant infor-
mation to the system in use. During almost a decade,
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NIST have provided participants with errorful (15-
30% of word error rate) word transcriptions of con-
versations, but suddenly interrupted this policy for
the 2012 evaluation.

3. ASSESSMENT OF SPEAKER RECOGNITION
SYSTEMS

One of the main advantages of automatic systems is
that they can be extensively and repeatedly tested to
assess their performance in a variety of evaluation con-
ditions, allowing objective comparison of systems in
exactly the same task, or observing the performance
degradation of a given system in progressively challeng-
ing conditions. In order to assess a system, we need a
database of voice recordings from known speakers,
where the ground truth about the identity of the speaker
in every utterance is known in order to compare it with
the blind decisions of the system.

At this point, we need some definitions. A test trial
will consist in determining if a given speaker (typically
the speaker in a control recording) is actually speaking
in the test recording. We will talk about target trials
when the target (known) speaker is actually speaking in
the test recording, and non-target (or impostor) trials in
the opposite condition (the speakers in the train and test
recordings are different). Automatic systems, given a
test trial of unknown-solution, provide a score; the
higher the score the greater the confidence in being
same-speaker recordings. In an ideal system, the distri-
bution of target-trial scores should be clearly separated
and valued higher than that of non-target trials, allowing
perfect discrimination setting a threshold between the
two distributions of scores. However, as shown in Figure
1, target and non-target score distributions usually
overlap each other partially.

Figure 1: Overlapping histograms of target and non-target score
distributions.

A detection threshold is needed if we want the sys-
tem to provide hard acceptance (score higher than the
threshold) of rejection (score lower than the threshold)
decisions for every trial. Two types of errors can be
committed by the system: false alarm (or false accep-
tance) errors, if the score is higher than the threshold in
a non-target trial, and miss detections (also called false
rejections) if the score is lower than the threshold in a
target trial. Then, as the score distributions overlap,
whatever the detection threshold we set a percentage of
false acceptances and missed detections will occur: the
higher the threshold, the lower the false alarms and the
higher the miss detections. This means that, for any
given system, lots of operation points are possible, with
different values of compromise between both types of
error.

3.1. ROC and DET curves

In Figure 2, both false acceptance and miss detection
errors are shown as a function of a sweeping threshold.
The error rate obtained where both false acceptance and
miss detection curves cross each other is known as the
Equal Error Rate (EER), and it is commonly used as a
single number characterizing system performance: the
lower the EER the better the separation between both
target and non-target score distributions.

Figure 2: Percentage (%) of alse alarms and miss detections as
function of a sweeping threshold (x-axis), and Equal Error Rate

(EER).

However, multiple error curves with different shapes,
possibly overlapping and crossing each other, can result
in the same EER,making it difficult to compare different
systems. An alternative single curve representing all
possible operating points of the system is usually pre-
ferred, as shown in Figure 3, known as Receiver Oper-
ating Characteristic (ROC) curve, where all the pairs of
errors (false alarm, miss) for a sweeping threshold are
represented as points in the false acceptance versus
missed detection plane, and connected with a single line.
The advantage of a ROC plot is that it represents all the
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operating points of a system in a single curve, allowing
easy comparison of systems (the closer to the origin of
coordinates, the better). Moreover, the commonly used
EER point is easily extracted where the ROC curve
crosses the diagonal straight line where false acceptance
errors equal the missed detection errors.

Figure 3: Receiver Operating Characteristic (ROC) curve sum-
marizing false alarm andmiss detection curves. EER (%) is easily
obtained where the ROC curve crosses de FA=miss diagonal.

However, when different systems (or the same sys-
tem in different evaluation conditions) with low EER
are represented, the graphical resolution is very low as
all the useful information is concentrated in the lower
corner close to the origin of coordinates. The Detection
Error Trade-off (DET) plot is suggested to overcome
this problem, modifying the axis in order for Gaussian
distribution of scores to result in straight lines in the
DET plot, allowing for easy comparison and detailed
analysis of different possible operation points of the
system, as shown in Figure 4.

Figure 4: Sample DET curves from the development phase of
ATVS-UAM systems for SRE 2008. The telephone-based SRE
2006 GMM-UBM system is progressively adapted to the cross-

channel mic and tel condition in 2008.

3.2. Cost function

In Section 3.1 we have shown how to evaluate the
goodness of the discrimination abilities of a system.
However, equally interesting is to know about the
goodness of the decisions (acceptance/rejections) of
a system for a given application of interest. Applica-
tions are characterized by two factors: the relative
cost of a false alarm versus a miss detection, and the
a priori probability of observing target and non-target
speakers. We can illustrate those two factors with
opposite applications where we could use exactly the
same speaker recognition systemwith differing detec-
tion thresholds. Firstly, imagine a non-critical user-
friendly application, of little interest to attackers or
impostors. Here, the a priori probability of being a
true user is high (Ptarget≥ Pnon-target), and system designer
will look not to disturb them in excess, so Cmiss ≥ CFA.
If in contrast we have a high-security application,
costs will verify CFA >> Cmiss. If we look for a given
speaker in big data repositories, where the probability
of finding the target speaker is very low, a priori
probabilities will verify Ptarget << Pnon-target.

For a given discrimination capability, depending on
the selected threshold the system can observe different
probabilities of false alarm, PFA|non-target, and miss detec-
tion, Pmiss|target. NIST have used for their Speaker Recog-
nition Evaluations (SRE) a composite cost function in
order to rank participant systems where, given the appli-
cation-dependent parameters Cmiss, CFAand Ptarget (Pnon-target
= 1 - Ptarget), and the system-dependent probabilities
PFA|non-target and Pmiss|target, an objective cost function CDET
can be computed:

[1] CDET = Cmiss · Ptarget · Pmiss|target + CFA · Pnon-target ·
PFA|non-target

It is important to note that CDET can only be computed
a posteriori once the correct labels are known, that is,
after the evaluation session. This means that participant
systems have to select in advance their decision thresh-
old for the given application parameters, and once results
are submitted, NIST tells participants their actual CDET.
But once the solution labels are known, it is also possible
to compute which was the optimal threshold of the sys-
tem for the given discrimination, which provides the
minCDET value. Systems with close values of CDET and
minCDET are well calibrated, while the bigger the differ-
ence, the bigger the calibration loss. We have to high-
light that it is possible to have a very good discriminant
system with a very bad performance at the evaluation
because of a bad threshold selection. Therefore, thresh-
old selection is maybe the most critical part of a NIST
submission, as it has the biggest direct impact in the
system’s associated cost.

However, submitting system scores in the form of
calibrated likelihood ratios is strongly recommended.
Doing so, there is no longer a need to set any detection
threshold, as the detection threshold is directly obtained
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from these application-parameters. The system will be
then application independent, meaning it is valid for any
given application (access-control, customer-oriented,
forensic…)whatever the application-parameters (a priori
probabilities of targets, and relative costs) (Brümmer,
2010; Ramos, Gonzalez-Rodriguez, Zadora, & Aitken,
2013; van Leeuwen & Brümmer, 2007). Additionally,
this is extremely useful for applications such as forensics
(Gonzalez-Rodriguez et al., 2007; Rose, 2002) where
priors and costs are unknown (case- and legal-system
dependent) and the reported likelihood ratios must be
valid for whatever priors and costs are given (if any).

4. THE EARLY NIST SRES (1996-2001):
ACOUSTIC-SPECTRAL SHORT-TERM
SYSTEMS

Text-independent speaker recognition technology in
the 90’s was dominated by the GMM-UBM approach
(Reynolds, Quatieri, &Dunn, 2000). Under the assump-
tion of frame independence, the short-term cepstral
vectors representing the spectral content every (typical-
ly) 10 milliseconds are modeled through a generative
model consisting in a weighted combination of multi-
variate Gaussian mixtures. This Gaussian Mixture
Model (GMM) is expected to represent the observed
features from the speaker in a cumulative way, which
are taken as observations from this underlying model.
GMMs, with high number of gaussians, were originally
trained as maximum likelihood estimates from the
training data, producing a large dependence for optimal
systems on the duration of the available trainingmateri-
al, as the number of free parameters to be estimated from
data grows with higher number of gaussians. It was soon
observed that a GMM representing all the available
feature vectors from a given reference population,
known as Universal Background Model (UBM) was
very useful to normalize the score from the GMM,
adding substantial robustness to duration variability.
Finally, Maximum a Posteriori (MAP) adaptation of the
speaker GMM from the UBM, where only the means
of the gaussians are adapted to the speaker data, became
the state-of-the-art at the time, being also the reference
system to be compared with for almost two decades.

But those GMM-UBMs were severely affected by
different sources of variability, such as available dura-
tions for training and test, type of telephone handset
(carbon vs. electret), or land-line versus cellular phone
calls. Those early evaluations were then designed to
explore the limits and assess the performance of those
systems in a variety of conditions to be sketched here.

4.1. Task definitions, corpora and evaluation
conditions

Different tasks were explored in those early evalua-
tions, but one-speaker detection, the task of determining

if a given speaker is actually speaking in a given conver-
sation side, has always been the main subject of evalua-
tion. For every trial, participants are required to submit
both a score indicating the confidence in being the same
speakers, which allows NIST computing DET plots, and
an actual decision value (true/false), allowing CDET and
minCDET values to be computed per participant. Male
and female data is included, but no cross-trials are per-
formed to avoid over-optimistic error rates.

Figure 5: Faunagram, or speaker-dependent performance plot,
showing non-target (red) and target (blue) scores per speaker.
Models are vertically sorted as a function of the speaker-depen-

dent EER threshold.

Conversations were extracted from the English-spo-
ken Switchboard corpus, a spontaneous conversational
speech corpus consistent of thousands of telephone
conversations from hundreds of speakers, each conver-
sation typically running through 5 minutes. In 2000 and
2001, the Spanish-spoken spontaneous but not conver-
sational Ahumada database (Ortega-Garcia, Gonzalez-
Rodriguez, &Marrero-Aguiar, 2000) was explored with
similar same-language (in train and test) protocols.
Different releases of Switchboard were produced
through the years (Cieri, Miller, & Walker, 2003), in-
cluding extensive landline (local- and long-distance)
and cellular (GSM and CDMA) phone data. Different
telephone numbers and types of telephone handsets were
used by the speakers and explored in the evaluations,
showing the degradation on performance in mismatched
conditions if not properly addressed. Systems were
tested with one- or two-session training, significantly
reducing the sensitivity to sessionmismatch by including
explicit session variability in the model with the use of
multiple session training. The effect of the length of the
test was also explored, showing very limited benefit
from same-session audio segments longer than 30-60
seconds, but strong degradation for shorter durations.
However, with just 3 seconds of speech, systems were
still providing very useful information (e.g., degradations
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from 6% of EERwith 30 seconds of test speech, to 15%
of EER with just 3 seconds of speech). To give an idea
of the complexity of each task, the cellular evaluation
of 2001 involved 190 speakers and 2200 test speech
segments, resulting in thousands of cross-speaker trials.
For interesting details on the early evaluation campaigns
and summary of systems and results in different condi-
tions, readers can refer to (Doddington, Przybocki,
Martin, & Reynolds, 2000).

Different additional tasks were deeply explored be-
sides one-speaker detection. Two-speaker detection is
essentially the same as one-speaker, but the test conver-
sation includes both speakers (summed channels) in the
conversation. A two-speaker mode for model training
was also explored, where a target speaker was present
in three different summed channel conversations with
three different speakers. The task of speaker segmenta-
tion (later called diarization) has also been largely ex-
plored, which is the task of determining the time inter-
vals during which unknown speakers are actually
speaking in different datasets from telephone conversa-
tional speech, broadcast news and recordings of multi-
speaker meetings. Speaker tracking was also explored
from 1999 to 2001, being the task of determining the
time instants where a known speaker was actually
speaking in a multispeaker conversation.Unsupervised
adaptation, where trials are presented sequentially and
accepted ones can be used to further improve the model
for future trials, was also explored from 2004 to 2006.
Finally, in 2010 and 2012, a Human Assisted Speaker
Recognition (HASR) task was proposed, where any
combinations of machines, naive listeners or human
experts were allowed in order to perform speaker detec-
tion over a manual selection of “especially difficult”
trials from the core condition (Greenberg et al., 2011).

4.2. Challenges for GMM-UBM systems

In order to tackle all the sources of variability de-
scribed above, short-term spectral systems had to be
improved significantly. Cross-condition trials with
handset, telephone number, and landline/mobile variabil-
ity stressed the need for robust “channel-independent”
features. Different channels show different long-term
frequency responses, severely influencingwith a cepstral
additive component throughout the utterance to the
short-term spectral estimates of the speaker. Cepstral
mean (and variance) substraction (Furui, 1981) proved
useful in reducing channel effects. RASTA band-pass
filters (Hermansky&Morgan, 1994), which additionally
filter out frequency modulations not expected from
speech, also helped to improve system performance.
But channels are not strictly time-invariant, and time-
dependent feature warping (Pelecanos & Sridharan,
2001) in sliding windows of 3 seconds significantly
contributed to the robustness of the systems, making
CMN-RASTA-Warping a by-the-time standard front
end.

However, pooling together the scores from all target
and non-target trials in order to compute a single DET
plot, EER value or CDET for a given system arose the
problem of score misalignment.When we talked before
about the target and non-target score distributions, we
would like to observe similar distributions for all
speakers (assuming gaussianity this means similarmeans
and variances). However, it is well known that the fauna
of speakers is varied (Doddington, Liggett, Martin,
Przybocki, & Reynolds, 1998). While most speakers in
a experiment behave similarly (sheep), some of the
speakers are difficult to be correctly recognized (goats,
target trials with low scores), some of the speakers are
easy to be imposted (lambs, or speaker models giving
high scores in non-target trials), and some of the speak-
ers are successful imposting other speakers (wolves,
speakers in non-target trials with high scores when ac-
cessing other speaker models). This behavior is illustrat-
ed in figure 5 (we called that plot a faunagram), where
each horizontal line represents actual non-target and
target scores for a givenmodel, andmodels are vertically
sorted as a function of their speaker-dependent EER
threshold, clearly showing that almost all speakers show
different means and variances of both target and non-
target distributions. Even though the discrimination per
speaker was reasonable (for instance, a low average of
the EERs per speaker), for any single global threshold
we select, the global EER will be significantly lower,
as some speakers will be favored but some others will
be strongly penalized.

In order to have a “common” non-target distribution
for all speakers, scores are usually Z-normalized. This
technique, known as Z-norm, estimates the distribution
(mean and variance) of non-target scores of a given
model using an external cohort of impostor trials, usually
formed by other utterances from speakers different from
the target, ideally in conditions similar to those of the
testing environment. Then, all trial scores from this
model are normalized to a zero mean unity variance
Gaussian simply subtracting its speaker-dependentmean
and dividing by its standard deviation. Once all speakers
share a common impostor distribution, a single global
threshold can be set giving a global EER close to the
average of the EERs per speaker.

As cohort speakers for Z-norm are selected from the
available data in the development phase, there is always
somemismatch between their scores and the actual non-
target distribution in the test phase, so some residual
misalignment is always present. Moreover, different
channels or handsets produce different non-target distri-
butions (one per channel/handset). This is why H-norm
(Handset normalization) was proposed, which is a dou-
ble version of Z-norm, one per handset (carbon/button).
During a test-time a decision about the estimated handset
is needed in order to use the proper handset parameters
for normalization. This is done simply scoring the input
utterance against two UBMs, one per handset, and se-
lecting the one giving the highest score (Reynolds et al.,
2000). However, for multiple cross channel conditions,

Loquens, 1(1), January 2014, e007. eISSN 2386-2637 doi: http://dx.doi.org/10.3989/loquens.2014.007

Evaluating Automatic Speaker Recognition systems: An overview of the NIST Speaker Recognition Evaluations (1996-2014) • 7

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


the large number of combined “channel” models would
make unlikely for them to be properly identified, so
more sophisticated approaches to channel compensation
are needed, as will be shown in section 6.2.

A second approach to score normalization known as
T-norm became extremely popular (Auckenthaler, Carey,
& Lloyd-Thomas, 2000). In this case, the non-target
score distribution is estimated with the actual test speech
against a cohort of (external) speaker models. This nor-
malization is extremely efficient as it takes also into
account the length of the input speech, acting also as a
kind of test-duration normalization. Moreover, T-norm
usually had the effect of a counter-clock-wise tilt of the
DET curve. Then, as the usual application parameters
in NIST evaluations for one-speaker detection resulted
in upper-left (in the DET plot) desired operation points,
T-norm not only benefited the discrimination but had
an enormous benefit for the calibration of the system,
allowing for detection thresholds resulting in much
lower CDET values. The joint use in cascade of Z- and
T- norm, known as ZT-norm has become a standard
score normalization technique that systems have success-
fully used for more than a decade.

5. GOING HIGHER (2002-2005):
SUPRA-SEGMENTAL SYSTEMS

In the influential and pioneering work presented in
(Doddington, 2001), word bi-grams were computed just
from the word transcriptions provided by an ASR giving
excellent speaker recognition results. Moreover, signif-
icant gains were reported from more and more training
and testing data, as opposed to short-term spectral sys-
temswhose performance saturates beyond 30-60 seconds
of test speech and two sessions for training. This success
resulted in an explosion of approaches taking advantage
of non-cepstral information. Using different speaker
information extraction techniques, as shown in section
2.2, participants developed different nature systems with
a common objective for exceptionally demanding new
tasks and conditions as will be shown in Section 5.1.

5.1. Task definitions, corpora and evaluation
conditions

While early evaluations focused on telephone chan-
nel (landline versus cellular), handset (carbon vs. elec-
tret) and duration effects, NIST evaluations since 2001
included new data types and conditions, and since 2004
through the use of the new Mixer corpus, which broad-
ened the scope of evaluation of speaker recognition
systems, the evaluation data allowed for large multi-
session training, multi-microphone recording andmulti-
lingual speakers (bilingual speakers of English and a
second language).

The extended data task allowed for multi-session
training of speakers, providing up to 16 conversations

to train every speaker. Training conditions were explored
with speech lengths of 10 seconds (from one conversa-
tion side), 1 full conversation side (average 2.5 minutes
of speech), 3 sides (average 7.5 minutes of speech), 8
sides (20 minutes of speech) and 16 sides (40 minutes
of speech). Those conditions provided enough data for
non-segmental speaker recognizers requiring longer
speech segments to fully exploit the different prosodic,
ASR-conditioned and idiolectal high level systems.
Different test segment lengths have also been explored,
namely 10 seconds, 30 seconds, 1 side (average 150
seconds) and 1 summed-channel conversation (5minutes
from two speakers). Short-term cepstral systems had
then the opportunity to focus on the demanding 10s-10s
condition or the regular 1side-30 seconds, while high-
level systems focused in the much bigger 8- or 16-sides
training tasks.

Moreover, multichannel microphone data was ob-
tained from hundreds of speakers who made some of
their calls from one of three special on-site recording
rooms where simultaneous recording of the phone con-
versations were obtained from eight different micro-
phones:

• Ear-bud/lapel mike
• Mini-boom mike
• Courtroom mike
• Conference room mike
• Distant mike
• Near-field mike
• PC stand mike
• Micro-cassette mike
For instance, in tests performedwith telephone-only

data training, cross-microphone tests trials showed
degradation from 2% EER for telephone test speech, to
EER values from 4% to 8% depending on the micro-
phone type, doubling or quadrupling the error rates. This
multi-microphone data allowed for extensive testing of
cross-channel conditions, converting the “discrete”
previous channel variability (e.g., two handsets, or two
types of telephone connections, etc.) in a “continuous”
source of variation due to the large number of combina-
tions of microphones, handsets, telephone channels and
train/test durations, motivating a new ”continuous” ap-
proach to session and channel variability, as will be
shown in 5.3 and will explode as the core technique to
state-of-the-art speaker recognition in section 6.2.

TheMixer corpora, in order to explore language ef-
fects on performance, have included hundreds of fluent
bilingual speakers in English and a second language,
namely (numbers are given for SRE 2004):

• Arabic (52 speakers)
• Mandarin (46 speakers)
• Russian (48 speakers)
• Spanish (79 speakers)
• English only (85 speakers)
Those 310 target speakers in SRE 2004 allowed

checking that for matched language trials results were
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mostly independent of the chosen language. However,
for mismatched trials (the speaker uses different lan-
guages for train and test), a significant but not dramatic
drop of performance was observed (e.g., from 3% EER
for matched language trials to 8% EER for mismatched
language trials).

In order to give an idea of the computational com-
plexity of those evaluations, NIST departed from some
thousands of trials in the early evaluations to about
26,000 trials (comparisons) involving over 400 speaker
models in the SRE 2004 1side-1side task, or 80,000 trials
from 1,900 speaker models (same speakers in different
training conditions) for the SRE 2004 multisession (16-
, 8-, 3- and 1-side) training trials.

5.2. Higher-level systems

In those years two different approaches were de-
veloped to further advance the current performance
of speaker recognition systems in the presence of such
challenging channel and language variability. The
first approach, described in this section, took advan-
tage of the much larger amounts of data and explicit
session variability included for training in the extend-
ed data tasks with up to 16 full conversation sides,
which were used for training prosodic and phone- and
lexical-sequence based speaker models. The second
approach, described in Section 5.3, faced channel and
session variability through new cepstral-based ways
of representing an utterance in a high-dimensional
space, allowing for much better results in classical
1side-1side and shorter tasks as 1side-10sec or 10sec-
10sec.

The different high-level approaches that were
adopted can be exemplified from those reported in the
6-week summer workshop in 2002 at John Hopkins
University (Reynolds et al., 2003). The 2001 NIST ex-
tended data was the reference task which used the entire
Switchboard I conversational telephone speech database,
with models trained up to 16 full conversation sides
(about 40 minutes of speech), having close to 500
speakers and 4100models (different models for different
amounts of training data) and 57,000 test trials involved.
To summarize, several families of systems were devel-
oped (results are provided for the 8-conversation training
condition):

• Acoustic: a 2048 mixture cepstral-based GMM-
UBM built from Switchboard II external data was
used as reference system, providing an EER of
only 0.7%.

• Prosodic: pitch and energy distributions and dynam-
ics, through the joint slope modeling of pitch and
energy contours gave an EER of 9.2%, which
dropped to 5.2% when adding phone context to
duration and contour dynamics. Additionally, a
different system using 11 duration-derived statistics
and 8 pitch related statistics obtained an EER of
8.1%.

• Phone-sequence: the idea of those systems is to
exploit the information provided by simultaneous
multiple open-loop phone recognizers in different
languages. An open-loop recognizer is basically a
speech recognition system without any language
modeling, providing just the most likely sequence
of phones without any linguistic constraint. Current
open-loop phone recognizers have very high phone
error rates (usually bigger than 30-40%), but they
are expected to produce “speaker-dependent”
transcriptions, as they are expected to err consistent-
ly for a given speaker. The combined used of phone
n-grams from 5 different speech recognizers in 5
different languages (PPRLM) obtained an EER of
4.8% in the 8-conversation reference condition,
while binary trees with a 3 token history (equivalent
to 4-grams) obtained a 3.3% EER in the same task.
Another system exploited the cross-stream informa-
tion from the multiple phone streams, obtaining a
4.0% EER, which fused with the PPRLM was re-
duced to 3.6%.

• Pronunciation modeling: comparing constrained
word-level ASR phone streams (the “true” phone
sequence) with error-prone open-loop phone
streams, speaker-dependent pronunciations were
learned, obtaining an EER of 2.3%.

• Lexical features: n-gram idiolect systems as those
described above in Doddington (2001) were tested,
providing an EER of 11% from the best-available
ASR word transcriptions.

• Conversational features: feature vectors were de-
rived from turn-taking patterns and conversational
style based information from pitch and durations,
then converted into n-grams which obtained an
EER of 15.2%.

Fusion of classifiers is strongly benefited from min-
imum correlation between systems to be fused. High-
level systems produced excellent error rates with ex-
tremely different features and models from those in
short-term cepstral-basedGMM-UBM,which represent-
ed by the time the state-of-the-art of speaker recognition.
When the non-cepstral systems were fused in the 8-
conversation train task, the fused EER was exactly the
same (0.7%) of the cepstral GMM-UBM system.
Moreover, when all high-level and acoustic systems
were combined, the reported EERwas only 0.2%, a 71%
relative reduction from incorporating high-level
knowledge to a reference cepstral-based system. A
similar combination of cepstral and high-level systems
in an actual submission to NIST SRE 2004 is described
in Kajarekar (2005).

5.3. High-dimensionality spectral systems

TheGMM-UBM is a generativemodeling approach,
where the underlying model (the GMM) is supposed to
be “generating” the observed features. In the late 90’s,
a new discriminative pattern recognition technique
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known as Support Vector Machine (SVM) (Schölkopf
& Smola, 2002; Vapnik, 1995) showed to be extremely
efficient discriminating objects (points) in very high
dimensional feature spaces. SVMs are easily trained,
the SVM speaker model being the hyperplane separating
the target training speaker utterances (one or several
points) from all non-target speaker utterances (lots of
points). The score from an unknown utterance with re-
spect to a given SVM model is obtained as a signed
distance to the separating hyperplane. But in order to
use SVM, low-dimensional feature vectors (as cepstral
vectors or n-gram probabilities) must be transformed
into separable high-dimensional vectors, which is done
by kernels (or transformations).

Different kernel-tricks were proposed to transform
a speech utterance, represented usually as a sequence
of observed feature vectors, into a very high dimensional
space representation. While GLDS (Campbell, Camp-
bell, Reynolds, Singer, & Torres-Carrasquillo, 2006a)
or MLLR (Stolcke, Kajarekar, Ferrer, & Shrinberg,
2007) supervectors were also successful, we highlight
here the Gaussian (or GMM) supervector (GSV) concept
(Campbell, Sturim, &Reynolds, 2006b), being a natural
extension of the well-known GMM-UBM framework.
AGMMofMGaussianmixtures in P feature dimension-
al space (cepstral vectors of dimension P) is composed
ofMweights,MxPmeans andMxP variances (assuming
diagonal covariance matrices). But as MAP adaptation
of the GMM from the UBM is usually performed just
over the means (weights and covariance matrices are
shared across all speakers), one UBM-adapted speaker
GMM differs from another GMM of a different speaker
just in their means. A supervector is then just the stacked
pile of all GMM means (after variance normalization),
a vector of MxP values, or a single point in an MxP di-
mensional space. As typical values of M are 1024 or
2048, and P takes values from 20 to 60, speech utter-
ances will then be represented by vectors of size 20k to
120k, in other words, by points in a 20k-120k dimension-
al space.

Once utterances are reduced to points in a high-di-
mensional space, the problem of session variability
(between-session differences in the speaker information)
becomes variability between points, with some dimen-
sions (directions) more severely affected than others.
The problem of session variability compensation can be
then addressed estimating the principal directions of
channel variability in the development phase, and later
canceling them out in the test phase, a process known
as Nuissance Attribute Projection (NAP) (Solomonoff,
Campbell, & Boardman, 2005). If we compute for every
speaker in the development set the mean supervector
(one per speaker), and every utterance is normalized
subtracting its mean speaker vector, the resulting data
set (known aswithin-scattermatrix) with all normalized
utterances contains only session variability and no
speaker information. Then, an eigenvector analysis
(PCA, Principal Components Analysis) of this within-
scatter matrix will provide the desired principal direc-

tions of channel variability, known as eigenchannels.
In the test phase, we can easily project every unknown
supervector into those channel dimensions, and subtract
the resulting supervector (which should contain the
session variability components) from the original one.
In order to get an idea of the significant improvements
obtained with GSV-SVM and NAP facing channel
variability, readers are referred to Campbell et al.
(2006b).

6. BIG DATA EVALUATIONS (2006-2012):
SESSION VARIABILITY COMPENSATION

Since 2006, NIST SREs became biannual, and have
introduced significant changes evaluation after evalua-
tion, as shown below in 6.1, additionally introducing
massive amounts of new data in every new evaluation.
But the biggest difference, as highlighted in Brümmer
et al. (2007), is that especially from SRE 2006, “systems
no longer train individual speaker models from some
minutes of speech, but whole systems are trained on
hundreds of hours of speech in whole NIST SRE
databases” (p. 2082), transforming the conceptually
simple speaker detection task, classically seen as that
of comparing two utterances to determine if they come
or not from the same speaker, into a serious big data
task where systems are designed to jointly optimize the
detection of thousands of speakers in hundreds of thou-
sands of comparisons, where the speech segments in the
comparisons are tens of thousands of utterances of varied
and mixed channel, speaking style, duration and noise
characteristics.

6.1. Task definitions, corpora and evaluation
conditions

The last four evaluations in the NIST SRE series
have introduced major changes from evaluation to
evaluation that can be summarized as follows:

• SRE 2006: the eight alternate microphones from
Mixer 3, as shown in section 5.1, were fully exploit-
ed. Additionally, an alternative cost function, Cllr,
is included as optional but soon became widely
used being usually the objective function for cost
minimization in fusion of systems. The number of
trials in the required (1side-1side) condition was
about 54,000.

• SRE 2008: up to 2006, evaluations dealt with
spontaneous conversational speech obtained in
telephone conversations between remote speakers.
The Phonecall conversational speech database,
known as Mixer 3, was used for SRE 2008. Addi-
tionally to regular telephone recordings (phonecall-
phn), conversational telephone speech recorded
over a microphone channel (phonecall-mic) is also
included in the test conditions. But for SRE 2008,
a new type of speech was recorded in an on-site
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interview scenario, resulting in the Mixer 5 Inter-
view speech database. It is also conversational
speech but of a totally different nature, and it is
recorded via multiple simultaneous microphones
(interview-mic). In the required condition (known
as short2-short3, similar to a multichannel1side-
1side), 1,788 phonecall and 1,475 interview
speaker models were involved for a total of almost
100,000 trials (60,000 male and 40,000 female).

• SRE 2010: four new significant changes were in-
troduced in 2010. Firstly, all speech in the evalua-
tion was English (both native and non-native).
Second, some of the conversational telephone
speech data has been collected in a manner to pro-
duce particularly high or particularly low vocal ef-
fort. Third, the interview segments in the required
condition were of varying duration, ranging from
three to fifteen minutes. And finally, the most rad-
ical change, a new performance measure
(new_CDET), intended for systems to obtain good
calibration at extremely low false alarm rates, was
defined from a new set of parameter values. While
CDET always used Cmiss=10, CFA=1 and Ptarget=0.01,
the new_CDET parameters are Cmiss=1, CFA=1 and
Ptarget=0.001, increasing in a factor of 100 the rela-
tive weight of false alarms to missed detections. In
order to have statistically significant error rates for
very low false alarm rates, the required (core)
condition included close to 6,000 speaker models,
25,000 test speech segments and 750,000 trials.

• SRE 2012: in NIST’s own wording, “SRE12 task
conditions represent a significant departure from
previous NIST SRE’s (NIST 2012, p. 1)”. In all
previous evaluations, participants were told what
speech segments should be used to build a given
speaker model. However, in 2012, all the speech
from previous evaluations with known identities
was made available to build the speaker models,
resulting in availability of large (and variable)
number of segments from the phone-tel, phone-mic
and int-mic conditions, systems being free to build
their models using whatever combination of previ-
ous files from every speaker. Moreover, additive
and environmental noises were included, variable
test durations (300, 100 and 30 seconds) consid-
ered, knowledge of all targets was allowed in
computing each trial detection score, tests were
performed with both known and unknown impos-
tors, and for the first time in a long time ASRword
transcripts were not provided. Finally, the cost
measure was changed again, averaging the 2010
operating point (optimized for very low false alarm
rates) with a new one with a greater target prior
(pushing the optimal threshold back, closer to its
“classical” position), intending for systems to show
greater stability of the cost measure and good score
calibration over a wider range of log-likelihoods.
For this evaluation, close to 2,250 target speakers
and 100,000 test segments were involved, for a total

in the required (core) condition of 1,381,603 trials.
For those involved in the (optional) extended trials
task, the number of trials was 67,000,000.

Factor analysis and i-vectors

Even though one site continued to submit successful
high- and low-level combined systems in those big data
evaluations (Ferrer et al., 2013; Kajarekar et al., 2009;
Scheffer et al., 2011), there was a consensus in turning
back to cepstral-only systems. The computational com-
plexity of higher-level systems and the relative improve-
ments obtained in limited training data conditions helped
the community tomove towards a scientifically complex
but very rewarding approach because of the performance
and computational efficiency of new high-dimensional
spectral systems as JFA-compensated GMM-UBM, and
later, i-vector front-end extraction and PLDA based
classification.

Different supervectors from different recordings of
the same speaker show severe variability due to inters-
ession variability, accounting for channel and speaker
specific variability. In order for a test supervector to be
close to the target speaker one, intersession variability,
usually called just “channel” variability, must be com-
pensated. Joint Factor Analysis (JFA) (Kenny, 2005)
models channel variability explicitly, taking the variabil-
ity of a supervector as a linear combination of the
speaker and channel components. In order to know and
compensate the channel “offset” in a test utterance, the
main directions of channel and speaker variability in the
high-dimensional space have to be found in advance
from large development datasets. The eigenchannels
matrix can be initialized through PCA of the within-
scatter matrix as shown in 5.3, and the eigenspeakers
(also called eigenvoices) one in a similar way from the
between-scattermatrix, that is, a data structure with one
column per speaker, where every column is the speaker
mean vector (mean of the different session-dependent
speaker supervectors) minus the global mean of all
speaker means. After this PCA initialization of both
matrices, they are improved through several Expectation-
Maximization (EM) iterations over the whole develop-
ment dataset. Once the eigenchannel and eigenspeaker
matrices are estimated, the channel and speaker factors
in a test utterance are jointly estimated as point estimates
as in classic relevance MAP. Then the channel factor
can be discarded, and the “clean” speaker supervector,
estimated as the offset from the UBM supervector in an
“amount” given by the speaker factor in the eigenspeaker
directions, can be used for recognitionwith a synthesized
“clean” GMMmodel or a SVM with “clean” supervec-
tors. JFA-based approaches, in several of the numerous
flavours of this technology, have obtained excellent re-
sults in the 2006 to 2010 NIST SREs.

However, it was shown that the channel factors,
which are to be discarded from the model, still contain
information from the speaker. Then, instead of assuming
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two different variability subspaces (speaker and chan-
nel), in (Dehak, Kenny, Dehak, Dumouchel, & Ouellet,
2011) a single subspace is considered, called Total (T)
Variability subspace, which contains both speaker infor-
mation and channel variability. In this case, the T low-
rank matrix is obtained in a similar way to the eigen-
speakers matrix but all the utterances for each speaker
are included (as if each of them came from different
speakers). Once the T matrix is available, an UBM is
used to collect Baum-Welch first-order statistics from
the utterance. The high-dimensional supervector (dimen-
sions ranging from 20,000 to 150,000), which is built
stacking together those first order statistics for each
mixture component, is then projected into a low dimen-
sional fixed-length representation known as the i-vector
in the subspace defined by T, being estimated as aMAP
point-estimate of a posterior distribution.

As both target (train) and test utterances are now
represented by fixed-lentgh i-vectors (typically from
200 to 600 dimensions), it can be seen as a new “global”
feature extractor, which captures all relevant speaker
and channel variability in a given utterance into a low-
dimensional vector. Target and test i-vectors can be di-
rectly compared through cosine scoring, a measure of
the angle between i-vectors, which produce recognition
results similar to those with JFA. But as they still contain
both speaker and channel information, factor analysis
can also be applied in the total variability subspace to
better separate low dimensional contributions of channel
and speaker information. Probabilistic Linear Discrimi-
nant Analysis (PLDA) (Prince & Elder, 2007) models
the underlying distribution of the speaker and channel
components of the i-vectors in a generative framework
where Factor Analysis is applied to describe the i-vector
generation process. In this PLDA framework, a likeli-
hood ratio score of the same speaker hypothesis versus
the different speaker hypothesis can be efficiently
computed, as a closed form solution exists. Further, in
order to reduce the non-Gaussian behavior of speaker
and channel effects in the i-vector representation, i-
vector length normalization (Garcia-Romero, & Espy-
Wilson, 2011) is proposed allowing the use of probabilis-
tic models with Gaussian assumptions as PLDA instead
of complex Heavy Tailed representations.

I-vector extraction, PLDA modeling and scoring,
and i-vector length normalization have become by the
time of writing this paper the current state-of-the-art in
text-independent speaker recognition, and the basis of
successful submissions to NIST SRE 2012. Multiple
generative and discriminative variants, optimizations
and combinations of the above ideas exist based in the
same underlying principles. As a result, joint submis-
sions to NIST SREs of multiple systems from multiple
sites into a single fused system have become usual, and
a must if an individual system wants to be in the horse-
race photo-finish of best submissions (Saeidi et al.,
2013).

However, recent success of Deep Neural Networks
in different areas of speech processing (Hinton et al.,

2012; Lopez-Moreno et al., 2014) promise for the near
future exciting developments in speaker recognition, as
those advanced in Vasilakakis, Cumani, and Laface
(2013), and Variani, Lei, McDermott, Lopez-Moreno,
and Gonzalez-Dominguez (2014).

7. DEMYSTIFYING SREs: THE 2014 NIST
I-VECTOR CHALLENGE

As shown in the above sections, NIST Speaker
Recognition Evaluations have always demanded from
participants a very complexmachinery of signal process-
ing, pattern recognition, data engineering and computa-
tional resources. A newcomer to the evaluations receives
hundreds of hours of speech data from previous evalua-
tions as development data, with varied data structures
and different segments and speaker identity labeling
formats in a mixture of conditions (channels, speaking
style, durations…). Even if having available and proper-
ly working all the software components to build a sys-
tem, the human and computational resources to be spent
for voice activity detection, feature extraction, universal
background modeling, estimation of variability sub-
spaces, etc., with the proper separation of conditions
and tasks, is a major access obstacle that inhibits many
potential participants from enrolling in the evaluations.

In order to eliminate this barrier and promote partic-
ipation from pattern recognition scientists working in
different areas, a simplified exercise has been proposed
in 2014 consisting in the classification and recognition
of a large amount of properly-extracted but unlabeled
i-vectors (speaker identifiers are not provided). More-
over, a good i-vector cosine-scoring reference system
is provided, with all the necessary scripts to work with
the evaluation data and submit results of the evaluation.
Additionally, NIST has made available an on-line cost
scoring system (over 40% of the test data) that provides
participants in real-time a good estimate of the goodness
of every new algorithm or tuning factor they have tested.
And finally, all participant-best (minimum) costs and
associated submitting site names are known every time
a participant submits a new system, promoting a horse-
race competition where all participants see each other
progress.

By the time of writing this paper, the participation
level in the 2014 i-vector challenge is a major success,
and the reported cost improvements over the reference
system promise exciting news in the form of new or
optimized algorithms to be presented in the NIST chal-
lenge workshop to be held during the Odyssey Speaker
and Language Recognition conference in June 2014.

8. DISCUSSION AND CONCLUSION

TheNIST series of Speaker Recognition Evaluations
is a good example of how to foster tremendous progress
in a specially challenging problem from a simultaneously
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competitive and cooperative scientific community.
Nevertheless, linking the progress in speaker recognition
to participation in the NIST cycle of evaluations is not
free of inconveniences.

First of all, participants cross-benefit from the other
participants publications and previous submissions, re-
sulting in a pseudo-normalization of procedures and
system components, with plenty of submissions differing
in very slight details. Moreover, high-risk innovation is
indirectly penalized as new alternative approaches are
unable to reach or help existing state-of-the-art systems,
the task being so complex and mature that participants
tend to bet on winning horses. And finally, being a
competitive evaluation according to a given cost function
with a final rank of participants in every task, and given
the benefits of fusing multiple classifiers in a complex
task like this, participants tend to group themselves in
large consortia, both to minimize risks and opt to better
ranking, submitting valid but unrealistic fusions of
multiple (even tens of) systems.

Speaker recognition systems have shown extremely
goodperformance and computational efficiencywhen lots
of development data, in conditions close to the evaluation
(application) data, are available. However, the current
biggest challenge to speaker recognition is how to adapt
this well-proven technology in known domains to new
applicationswhenlittle(comparedtothehundredsofhours
of data inNISTSREs) or no development data is available
in newunknownconditions (language, channels, speaking
style, audio quality, etc.). Related challenging issues are
those of calibration in highly mismatched environments,
the production of reliable automatic recognition results
from descriptive speech features (pronunciation patterns,
voicequality,prosodicfeatures…)correlatingwithlinguists
and phoneticians observations, ormeasuring the goodness
of the system decisions in individual comparisons, that is,
how reliable is one system in the unknown comparison at
hand, not globally in thousands of known comparisons.

However, in spite of the inconveniences and out-of-
domain limitations, it is extremely beneficial for system
developers to be involved in the evaluations. There is a
huge gap between developing a new system in the labo-
ratory or trying a new pattern recognition algorithm and
being able to obtain good results in the demanding
conditions of the NIST evaluations. And only when
tested in really challenging environments, speaker
recognition systems will be a step closer to being usable
in daily applications.
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