
Loquens 6(2)
December 2019, e065

eISSN 2386-2637
https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }

Alan Bale1, Charles Reiss1, David Ta-Chun Shen2

1Concordia University (Canada)
2Tamkang University (Taiwan)

alan.bale@concordia.ca, ORCID: https://orcid.org/0000-0002-7522-3140
charles.reiss@concordia.ca, ORCID: https://orcid.org/0000-0002-8215-8252
davidtc.shen@gmail.com, ORCID: https://orcid.org/0000-0001-9807-3408

Submitted: 28/09/2019; Accepted: 28/09/2019; Published online: 01/12/2020

Citation / Cómo citar este artículo: Alan Bale, Charles Reiss & David Ta-Chun Shen (2019). Sets, rules and natural classes:
[] vs. { }. Loquens 6(2), e065, https://doi.org/10.3989/loquens.2019.065

ABSTRACT: We discuss a set-theoretic treatment of segments as sets of valued features and of natural classes as
intensionally defined sets of sets of valued features. In this system, the empty set { } corresponds to a completely
underspecified segment, and the natural class [] corresponds to the set of all segments, making a feature ± Segment
unnecessary. We use unification, a partial operation on sets, to implement feature-filling processes, and we com-
bine unification with set subtraction to implement feature-changing processes. We show how unification creates the
illusion of targeting only underspecified segments, and we explore the possibility that only unification rules whose
structural changes involve a single feature are UG-compatible. We show that no such Singleton Set Restriction can
work with rules based on set subtraction. The system is illustrated using toy vowel harmony systems and a treatment
of compensatory lengthening as total assimilation.

Keywords: phonology, features, set theory, logic, unification, phonological rules.

RESUMEN: Conjuntos, reglas y clases naturales: [] frente a { }.– Discutimos en este trabajo el tratamiento teórico
conjunto de los segmentos entendidos como agrupaciones de rasgos especificados, y de las clases naturales entendi-
das como agrupaciones definidas intensionalmente de grupos de rasgos especificados. En este sistema, el conjunto
vacío { } se corresponde con un segmento completamente inespecificado, y la clase natural [] se corresponde con el
 conjunto de todos los segmentos, lo que hace innecesario el rasgo ± Segmento. Nos servimos de la unificación –una
operación parcial sobre los conjuntos– para implementar los procesos de rellenado de rasgos, y combinamos la unifi-
cación con la sustracción de todo el conjunto para llevar a cabo los procesos de cambio de rasgos. Mostramos cómo
la unificación afecta aparentemente solo a los segmentos subespecificados, y exploramos la posibilidad de que única-
mente sean compatibles con la GU las reglas de unificación cuyos cambios estructurales implican a un único rasgo.
Comprobamos que la Restricción de un Conjunto Unitario no puede funcionar con reglas basadas en la sustracción de
todo el conjunto. Como ilustración del sistema nos servimos de sistemas de prueba sobre la armonía vocálica así como
del tratamiento del alargamiento compensatorio como una asimilación completa.

Palabras clave: fonología, rasgos, teoría de conjuntos, lógica, unificación, reglas fonológicas.

1. INTRODUCTION

Developing ideas introduced in Bale et al. (2014) and
Bale and Reiss (2018), this paper explores some of the
consequences of analyzing segments as sets of features
and, as a corollary, analyzing natural classes as sets of sets

of features. We adopt the (fairly standard) view that fea-
tures rather than segments are the primitives of phonolog-
ical representation: the “alphabetic symbols that we use
freely [are] nothing more than convenient ad hoc abbrevi-
ations for feature bundles, introduced for ease of printing
and reading but without systematic import” (Chomsky

Copyright: © 2019 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International
(CC BY 4.0) License.

https://doi.org/10.3989/loquens.2019.065
mailto:alan.bale@concordia.ca
https://orcid.org/0000-0002-7522-3140
mailto:charles.reiss@concordia.ca
https://orcid.org/0000-0002-8215-8252
mailto:davidtc.shen@gmail.com
https://orcid.org/0000-0001-9807-3408
https://doi.org/10.3989/loquens.2019.065

2 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

and Halle, 1968, p. 64).1 Taking these feature bundles to
be sets allows us to apply ideas from set theory to pho-
nology.2 In particular, we discuss the logical possibility
that some segments may be fully underspecified and thus
are represented by the empty-set, denoted by either ∅ or
{ }, depending on the context.3 We also discuss how the
empty set can be used to define a natural class over all
segments.

Our discussion of the empty segment starts by high-
lighting some general properties of phonological rules,
in particular the fact that the target of rules are natural
classes. As argued in section 2, this basic property of
rules has significant consequences for the empty segment,
namely the only plausible natural class that contains the
empty segment also contains all other segments. Hence,
it is impossible to target the empty segment without also
targeting every other segment. As we outline in section 4,
there are indeed phonological processes that plausibly
involve rules that target the empty segment, namely com-
plete assimilation. We argue that complete assimilation
(as well as partial assimilation) is best treated by decom-
posing the traditional arrow of phonological rules into two
separate operations, one that involves feature deletion and
another that uses unification (a partial function similar to
set union). Feature deletion creates partially underspeci-
fied or fully underspecified segments, while unification
“fills-in” these underspecified segments. This “two step”
procedure allows us to technically target all segments for
assimilation but yet only affect the underspecified seg-
ments. The process is discussed in the abstract in sec-
tion 4, and then as a plausible analysis of vowel harmony
and compensatory lengthening in sections 5 and 6. As part
of our discussion, we explore the hypothesis that assimi-
lation is done one feature at a time in the sense that there
is a separate rule of assimilation for each feature. We
demonstrate how such a hypothesis not only simplifies
our account of certain phonological phenomenon but also
makes novel empirical predictions.

2. FEATURES, SEGMENTS AND NATURAL
CLASSES

Bale et al. (2014) introduce an innovation to phono-
logical notation to better reflect the type-theoretic nature
of the components of rules, based on the idea that seg-
ments are consistent sets of valued features, that is, sets
that may contain +F or −F, for a given feature F, but not

1 Some work in phonology (e.g., Mielke, 2008; Flemming, 2005)
appears to accept both segments and features as primitives or to posit
segments as primitives with features being ‘assigned’ to segments on a
language specific, ad hoc basis. This is not the place to explain why we
find these positions vague and untenable, but the reader should be aware
of their existence.
2 See Reiss (2003) for some arguments against adopting the kind of
feature geometric approaches to representations advocated by Sagey
(1986), McCarthy (1988) and many others.
3 One reason to favor { } over ∅ is that in Bale and Reiss (2018) we use
a variant of the empty set symbol, ∅, to denote morphemes with no
phonological content. The empty braces { } are less likely to be confused
with that symbol than the normal empty set symbol, ∅.

both (see section 4).4 The basic idea behind this innova-
tion is best demonstrated by providing an example of a
prototypical phonological transformation.5

Suppose we have a language with a five-vowel inven-
tory that raises its mid vowels to their high counterparts
before a nasal consonant. Informally, we might indicate
such a process as in (1):

(1) A Simple Phonological Process:

 o, e → u, i / ___ n, m, ŋ
Target Change Environment

The targeted vowels o, e each turn into the correspond-
ing high vowel before any one of the nasals n, m, ŋ that
define the environment. Traditional formalizations of such
a process might represent the target set, the set of mid
vowels in the language, as [−HigH, −Low], as in (2):6

(2) Traditional Formulation of Process:

[−HigH, −Low] → [+HigH]/___ [+NasaL]

Unpacking this traditional notation we see that the rule
refers to the set of targets via a superset relation: Chomsky
and Halle’s “feature bundle” segments are sets of valued
features, and a segment is a target of the rule if and only
if it is a superset of the set [−HigH, −Low].7 The target of
the process is thus a set of segments; that is, a set of sets
of valued features, as in (3):

(3) Target—natural class of segments
X = {{x : x ⊇ {−HigH, −Low }}

The characterization of the environment of our rule must
also be a set of segments, namely the set of segments that
are a superset of the set of features {+NasaL}, as in (4):

(4) Environment—natural class of segments
Y = {{y : y ⊇ {+NasaL }}

The square brackets in the target and the environment
in traditional rules like (2) are used to symbolize these
natural classes:

4 For purposes of this paper, we abstract away from several crucial
points, such as how these sets are associated with timing slots, and the
related issue of contour segments, such as prenasalized stops and
affricates, which, in violation of the consistency requirement, do appear
to contain conflicting tokens or feature values within a single segment
(e.g., +NasaL and −Nasal). We think the logical issues raised in this
paper and by Bale et al. (2014) would survive extension to structures
more complex than sets, a topic of our current research.
5 Our use of the terms ‘transformation’, ‘process’ and ‘rule’ will be a bit
awkward, since we treat so-called feature changing rules as processes
consisting of two rules.
6 Alternatively, the target set might be represented as just [–Low], if such
a process is assumed to apply vacuously to vowels specified [+High].
7 See discussion in Bale et al. (2014), especially fn. 6, about how this
traditional interpretation differs from that of SPE (Chomsky and
Halle, 1968).

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 3

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

(5) a. {{x : x ⊇ {−HigH, −Low }} = [−HigH, −Low]

 b. {{y : y ⊇ {+NasaL }} = [+NasaL]

Although the square brackets are used to specify nat-
ural classes in the target and environment of traditional
rules, they are used differently to specify the structural
change ([+High] in (2) above). This change does not refer
to a set of segments—the interpretation of the change is
not parallel to the “natural class” interpretation of the
target and environment. The structural change lists the
features that are changed or added to the target segments
when they appear in the rule environment.

In traditional notation, square brackets do not have the
same set-theoretical meaning for the structural change as
they do for the target and environment. To address this
inconsistency, we replace the square brackets with standard
set braces. The set-brace notation, as in (6), makes clear
the difference between natural classes—i.e., sets of sets of
(valued) features—and mere sets of (valued) features.

(6) Structural Change—set of features: {+HigH}

With this notation, the process in (2) is expressed
instead as (7):

(7) Process expressed with consistent bracketing:

 [−High, −Low]→ {+HigH}/___ [+NasaL]

 a. {…} denotes a set of features
 b. […] denotes a set of sets of features, a set of

segments constituting a natural class

Our revised notation adopts Bertrand Russell’s type
theory, like earlier work in phonology (Peterson and
Harary, 1961), and consistently distinguishes a natural
class of segments from a set of features. In this paper, we
explore the hypothesis that all phonological rules fit the
format represented in (7). In other words, all rules inten-
sionally target a natural class and all environmental trig-
gers are intensionally defined in terms of natural classes.

Several points follow from our interpretation of natu-
ral classes in rules. First, the notation works well with
underspecification. If a language has a voiced /d/, a voice-
less /t/ and a coronal stop unspecified for voicing /D/, for
example, as Inkelas (1995) proposes for Turkish, then the
representation in (8) describes the natural class that con-
tains all three of these segments.

(8) A natural class with an underspecified member8

 i. Description of class:
 [+CoroNaL, −CoNtiNuaNt, −soNoraNt ...]

= {{x: x ⊇ {+CoroNaL, −CoNtiNuaNt,
−soNoraNt... }}

8 The ellipsis ‘...’ denotes whatever other features may be
relevant to characterizing the segments in question, in this case,
anything except VoiCe

 ii. Members of the class:
 a. /t/ = {−VoiCe, +CoroNaL, −CoNtiNuaNt,

−soNoraNt ...}
 b. /d/ = {+VoiCe, +CoroNaL, −CoNtiNuaNt,

−soNoraNt ...}
 c. /D/ = {+CoroNaL, −CoNtiNuaNt, −soNoraNt

...} (no VoiCe feature)

So, our set theoretic interpretation allows us to refer to
a natural class that includes a member whose specification
is a subset of that of other members—for example, the
specification of /D/ is a subset of the specification of /t/.
This is a non-trivial result in light of a widely cited char-
acterization of natural classes: “We shall say that a set
of speech sounds forms a natural class if fewer features
are required to designate the class than to designate any
individual sound in the class” (Halle, 1964, p. 328). In our
new characterization, the same number of features may be
needed to characterize a class C and some member seg-
ment q ∈ C. However, by paying attention to types, we
can distinguish reference to C from reference to q. For
example, compare the representation in (8.i) with that in
(8.ii.c). The former is a set of sets of valued features; the
latter is a set of valued features.

Notice that a natural class can contain just a single
member, but the representation of such a class is not iden-
tical to the representation of its unique member:

(9) The segment /t/ vs. the class containing only the
 segment /t/

 • The segment /t/
 {−VoiCe, +CoroNaL, −CoNtiNuaNt, −soNoraNt ...}

 • The class containing only the segment /t/
 [−VoiCe, +CoroNaL, −CoNtiNuaNt, −soNoraNt

...] = {{x : x ⊇ {−VoiCe, +CoroNaL, −CoNtiNuaNt,
−soNoraNt }}

We refer to the segment /t/ with features in set braces,
but the set containing just /t/ has the same features listed
in square brackets.

There are, however, some segments that cannot con-
stitute a natural class by themselves. Our new notation
makes it clear why it is impossible to characterize a class
containing only an underspecified segment, without con-
taining more specified ones that occur in the same lan-
guage. This follows from the logic of the subset/superset
relation: the features of /D/ are a subset of the features of,
say, /t/, so it is impossible to represent a natural class that
contains /D/ but not /t/. To reiterate, although we can refer
to a natural class containing just /t/, and not /d/ or /D/, we
cannot refer to a class containing just /D/, and not /t/ and
/d/ in the target or environment of a rule.

This logical result immediately appears to be at odds
with the existence of feature-filling rules—for example,
the analysis of Turkish (Inkelas, 1995) requires that /D/
surface as voiced in onsets and voiceless in codas, but
/t/ does not get voiced in onsets. How can we manage
to target /D/ in an onset voicing rule, but not /t/, if we

https://doi.org/10.3989/loquens.2019.065

4 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

can’t refer to the natural class containing just /D/? We will
return to this issue below.

Extrapolating from the impossibility of referring to
/D/ (without /t/ and /d/), which is underspecified only
for Voiced, it follows that no rule can target a segment p
whose representation contains a subset of the information
in the representation of a segment q, without also target-
ing q. Pushing this to the logical limit, what happens if a
segment corresponds to the empty set of valued features,
the fully underspecified segment, which we denote as { }?
The answer is that it is impossible to target this segment
without targeting every other segment.

Here’s why: a basic result of set theory is that the
empty set is a subset of every set.9 This means that every
set is a superset of the empty set. If we write a rule with
the target class specified without any features, we get the
expression in (10). Such a rule must target all segments.

(10) Empty Target—natural class of
segments X = {{x : x ⊇ { }} = []

For concreteness, consider a rule with such a target,
as in (11):

(11) Process with an empty target:
[] → {+HigH}/__ [+NasaL]

The notation [] in (11) does indeed allow the rule to
target the fully underspecified segment, but it cannot refer
to such a segment to the exclusion of all other segments.
Despite the fact that there can be no rule that only tar-
gets a segment with an empty feature set, we will show in
Section 4 how to achieve that result indirectly.

Of course, we may actually want to refer to the natu-
ral class of all segments, and the representation in (10)
shows us how to do so. Since the representation of []
refers to the natural class of all segments, there is no need
for the feature ±segmeNt (Shen, 2016). Chomsky and
Halle (1968, p. 64) introduced this feature to distinguish
segments from morpheme and word boundary symbols.
The use of such a feature was subsequently discussed in
various contexts, such as Hyman (1985), and sometimes
rejected, but more often ignored until a particular need
arose, then opportunistically invoked. Independent of the
merits of any prior arguments for or against this feature,
we now see that a set theoretic representation of targets in
which natural classes are represented as sets of sets viti-
ates the need for a +Segment feature.

3. SOURCES OF EMPTINESS

Before discussing rules that include the empty seg-
ment as a potential target, it is important to first discuss
how such segments enter into a phonological derivation
in the first place. There are at least three ways com-
monly cited in the literature, using various notations.

9 Given any set A, there is no member of ∅ that is not a member of
A —since ∅ has no members.

First, the empty segment can be part of the phonological
representation of a morpheme. In this case, { } is pres-
ent in the lexicon (see Borrelli, 2013; Côté, 2008; Dell
and Elmedlaoui, 1985; Trommer, 2015, among others).10
Second, the empty segment can be introduced by a pho-
nological insertion rule, analogous to any other segment
epenthesis rule.11 Third, the segment can be derived by a
phonological process, namely feature deletion.12 Since the
first two ways of introducing an empty segment is fairly
straightforward, in this section we focus on the potential
derivation of an empty segment through feature deletion.

In Bale et al. (2014), we argue that feature changing
rules must be analyzed as the deletion of features via set
subtraction followed by insertion via unification. In this
context, rules of total assimilation, including compensatory
lengthening rules, can be modelled by deriving { } from
a fully specified underlying segment, then unifying this
{ } with the complete feature-set of another segment. The
mechanism for filling in features in a derived empty seg-
ment will be the same as that used for an underlying empty
segment, discussed below in Section 4. Let’s consider now a
mechanism for deriving { } prior to the feature-filling stage.

Let’s suppose there is a language L1 which has a compen-
satory lengthening process that deletes all the features in a
nasal segment that appears in coda position and then length-
ens the preceding vowel, as represented by the mappings
from underlying forms (UR) to surface forms (SR) in (12):

(12) Compensatory lengthening for deletion of nasals in
coda

 a. tan-so ta:so
 b. tan-upi tanupi
 c. tak-so takso
 d. tak-upi takupi
 e. tem-so te:so
 f. tem-upi temupi
 g. tum-so tu:so
 h. tum-upi tumupi

10 There is a large literature proposing various kinds of ‘empty’
segments, including moras, CV-slots, X-slots or syllable constituents
unassociated to a segmental melody. Bendjaballah and Haiden (2008)
present a scale of eight levels of ‘emptiness’ relevant to templatic
morphology systems alone. We cannot provide an analysis of each case
where empty or “ghost” segments have been proposed, but by providing
a formalization of one kind of empty element it will be easier to evaluate
such proposals and examine the extent to which there is unity of behavior
among these elements in terms of well-understood set-theoretic notions.
11 For example, epenthesis of default vowels that end up as copies of
other vowels in the word can be analyzed as phonological insertion of { }
along with an associated timing slot. Lengthening of a vowel under
particular syllable structure or stress conditions can also be analyzed as
insertion of { } and a timing slot. Note that our suggestions are not in
conflict with analyses that involve merely inserting a mora or a CV or X
timing slot. Such proposals have to be enhanced by a model of how timing
slots end up associated with segmental (featural) content. Presumably, the
same mechanism can be applied to both epenthesis and lengthening cases.
12 The segment /{ }/ may perhaps also be introduced by a morphological
process, for example, a morphologically induced lengthening. However,
this process precedes the phonological derivation, and we won’t consider
it here.

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 5

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

Only forms (a), (e) and (g) show a change from UR
to SR, since these are the only forms where the UR has a
potential coda nasal. In our system, the derivation of such
forms involves two steps after the initial syllabification.
First, a rule that removes all the features of the nasal in
coda position will apply. Informally, we might be tempted
to use the following notation to symbolize such a process:

(13) The wrong notation:
[+Nas] → { }/ in Coda

But this is not quite right given our discussion above.
The structural change portion of the rule in our notation
refers to the features that are affected, not to a segment
or a class of segments. For example, the rule ‘[+Nas]
→ {+VeLar}/ in Coda’ does not represent the replace-
ment of nasal segments in coda position with {+VeLar},
the underspecified segment containing only the feature
+VeLar. Instead it represents the process of adding the
+VeLar feature to nasal segments in the coda position. To
represent a process of removing features, we need a new
notational system.

Bale et al. (2014) argue that the traditional arrow ‘→’
in phonology should be deconstructed into a set of theo-
retic operations that can be incorporated into basic rules.
The operation for removing features from sets is set sub-
traction. We can take advantage of this operation to derive
empty segments. There are at least two possible ways we
could do this. One way is to subtract a set from itself,
since for any set A, it is the case that A–A = ∅. A second
way is to subtract from a given set A all possible valued
features—all combinations of + or – and a feature. We
will use this second method.

Let’s formally represent a valued feature, such as
+ VoiCe as an ordered pair where the first member con-
tains a plus or minus symbol and the second contains
the name of the feature (e.g., + VoiCe = 〈+, VoiCe〉).
Suppose that V is the Cartesian product of {+, −} and a
set F of all possible features (i.e., V ={+, −}×F). Thus,
V is the set of all possible matches between a + / –
value and a feature. Given this definition, we can turn
any feature set x into the empty set by subtracting V i.e.,
x – V = ∅ for any segment x.13 With this notation in
mind, consider the rule in (14):

(14) [+NasaL]–V/ in Coda

This rule can be interpreted as follows:14

13 Note that V contains all valued features, –HigH, +HigH, etc. Recall
that set subtraction does not care if the subtracted set contains elements
that are not in the set to be subtracted. For example, {b, c, d} – {b, c} =
{b, c, d} – {a, b, c, e, f, g} = {d}.
14 We use the subtraction symbol to represent the function that maps
segments that fit the structural description to the same segment minus
the structural change. This is a common extension of notation. To be
clear, we are not using the symbol ‘−’ to represent the subtraction of the
structural change from the structural description, but rather the
subtraction of the structural change from each segment in the class
denoted by the structural description.

(15) The interpretation of ‘[+NasaL]–V/ in Coda’ is a
function from a string x1 x2 x3… xn to a string y1 y2
y3 … yn such that for each xi where 1 ≤ i ≤ n:

 1. if xi ∈{{z : z ⊇ {+NasaL }} and xi is in a coda,
then yi = xi −V,

 2. otherwise yi = xi.

Of course we could have simply stipulated that
yi (i.e., the output segment) was the emptyset (i.e., if
xi ∈{y: y ⊇ {+NasaL}} and xi is in the coda, then yi = ∅),
however, we favor the formulation in (15) as it makes
use of set subtraction, an operation we already need for
other purposes (see Bale et al., 2014). Thus, by using set-
subtraction, we relate this rule to other potential rules that
may subtract a subset of V from a segment instead of the
complete set.15

The target segments of rule (15) are the members of
the natural class of nasals in a language, say, {n, m, ŋ},
occurring in coda position. The resulting corresponding
segment in the output strings (via set subtraction) is the
same for any target segment—it is always the segment
{ }. We now turn to the next step in the process of com-
pensatory lengthening, a rule that fills in feature values
via unification.

4. EMPTINESS IN RULES

We have indicated how the segment { } can be intro-
duced into a derivation. We have also pointed out that it
is not possible to refer exclusively to this segment in the
target or environment of a phonological rule—the only
natural class that contains the empty segment also con-
tains every other segment. In this section, we will show
that, while it is true that we cannot target { } intensionally,
we can ensure that this segment is the only non-vacuously
affected target of a rule. In other words, when the effect of
the rule on every other segment is vacuous, it can appear
extensionally as if only { } is targeted.

4.1.	Unification

The critical idea we need, presented in Bale et al.
(2014), is that feature-filling is the result of unification,
which is a partial operation. This idea is probably best
explained by contrasting unification with set union. Set
union is not partial: for any two sets, A and B, the union of
the two, A ∪ B, is always defined (as the set that includes

15 Our discussion above grants a special status to v, the set of all valued
features. However, it remains an open question whether phonological
UG actually has access to a symbol for this set, or it is a metalanguage
symbol with which phonologists can encode the case of subtraction of
all valued features from a segment. This issue is related to the question
of whether the set subtractions discussed here are implemented as a
single operation or as a series of individual subtractions. It seems to be
the case that something like the SSR, discussed in section 4.3, is
untenable for subtraction rules. In brief, the reason is that as we apply
more and more composed unification rules, the targets of the rules
become more and more highly specified; whereas iterating subtraction
leads to less and less specified targets.

https://doi.org/10.3989/loquens.2019.065

6 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

all the elements of A and all the elements of B, but no
other elements). Unification, in contrast, is defined only
when its output is consistent. For phonological purposes,
we define consistency as follows:

(16) CoNsisteNCy: A set of features r is consistent if and
only if there is no feature F ∈ Ƒ
such that + F ∈ r and – F ∈ r

When Consistency is met, the output of set unification
is identical to the output of set union:

(17) uNifiCatioN: For any two sets, A and B, the
unification of A and B, A B is defined if A∪B is
consistent. When defined, A B = A∪B.

When A B is not defined, we will say that unification
fails.

To understand how unification can be used in phono-
logical rules, let’s reconsider the Turkish data discussed
above, involving two fully specified coronal stops (/t/ and
/d/) as well as a coronal stop underspecified for voicing
(/D/). In Inkelas’ analysis, /D/ is voiced to [d] in onsets,
but both /t/ and /d/ surface unchanged. As discussed
above, there is no way of targeting just /D/ using the
rule notation discussed above (any natural class contain-
ing /D/ will also contain /t/ and /d/), however there is a
way to make a rule that appears to target just /D/ using
unification:

(18) [+Cor, –Son, –CoNt] {+VoiCe}/in Onset
position

This rule will have the following interpretation:

(19) The interpretation of ‘[+ Cor, –Son, –CoNt]
{+VoiCe}/in Onset position’ is the function that
maps any string of the form x1x2x3 … xn to the string
y1 y2 y3 … yn such that for each i, where1 ≤ i ≤ n:

 • if xi ∈[+Cor, –soN, –CoNt] (i.e., xi ⊇ {+Cor, –soN,
–CoNt}) and xi is in the onset of some syllable, and
xi {+VoiCe} is defined, then yi = xi {+VoiCe}

 • otherwise yi = xi.

The rule targets the natural class that contains the three
segments /t, D, d/. Let’s see how the rule applies in vari-
ous cases, assuming monosyllabic forms:

(20) Rule (26) illustrated

 a. Input /tab/: /t/ {+VoiCe} is undefined, so
output is [tab]

 b. Input /Dab/: /D/ is in syllable onset and /d/
 {+VoiCe}= [d], so output is [dab]

 c. Input /dab/: /d/ is in syllable onset and /d/
 {+VoiCe}= [d], so output is [dab]

 d. Input /baD/: /D/ is not syllable onset, so out-
put is [baD]

In (20a), unification fails, because /t/ is –VoiCe, so the
union of /t/ with {+VoiCe} is not consistent. Therefore,
the output string is the same as the input string, [tab]. In
(20b), unification adds the valued feature {+VoiCe} to
/D/, yielding an output string [dab]. In (20c), unification
does not fail, but it is vacuous, since /d/∪{+VoiCe} is
just [d]. The output string is identical to the input string,
namely [dab]. In (20d), /D/ is not in a syllable onset, so
the output string is identical to the input string, namely
[baD]. The phonological rule targets all three segments
in the natural class, but has a non-vacuous effect only on
the underspecified segment, and only when that segment
occurs in an onset.

4.2.	Feature	filling	rules	and	the	empty	segment

The preceding example made use of /D/, a segment
unspecified for the single feature, VoiCe, and a rule that
added a value for this feature to segments lacking one.
This logic can be extended to segments lacking values
for any number of features, even to the empty segment.
To illustrate how we can extensionally target the empty
segment without doing so intensionally, let’s construct a
simple example of a phonological process in a language
defined within a grammar with a very limited inven-
tory of features. Consider a system with just two binary
features ±F, ±G. If we do not stipulate that segments be
complete, that is, if we allow underspecification, these
features can be combined into nine different segments
(feature sets):

(21) Nine segments definable with two binary features

{+F, +G}, {+F, −G}, {+F}, {−F, +G},
{−F, −G}, {−F}, {+G}, {−G}, { }

Now consider a language L1 that has only five of these
segments, the fully specified ones, {+F, +G}, {+F, −G},
{−F, +G}, {−F, −G} and the empty segment {}. Suppose
that L2 has a process that assimilates the empty segment
to the preceding segment if that segment is{+F, +G}, so
that we observe the following input-to-output mapping:

(22) Input-to-output mapping in L1:

{+F, +G}{ } {+F, +G}{+F, +G}

This process can be informally characterized as stat-
ing that the empty segment becomes {+F, +G} when it
occurs after{+F, +G}:

(23) Find the empty segments that are adjacent to seg-
ments with +F and+G, and replace those empty
segments with the segment{+F, +G}.

However, the informal process in (23) intensionally
targets the empty segment, which, as we discussed in
section 2, cannot constitute a natural class. Yet, if we use
set-unification as the primary operator, we can write a

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 7

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

rule that targets a natural class and yet achieves an almost
identical input-to-output mapping as the one expressed by
the informal process in (23). Consider the rule in (24).

(24) [] {+F, +G}/ [+F, +G]___

This rule will have the following interpretation:

(25) The interpretation of ‘[] {+F, +G}/ [+F, +G]___’
is the function that maps any string of the form
x1x2x3…xn to the string y1y2y3…yn such that for each
i, where 1 ≤ i ≤ n:

 • if xi ∈[] (i.e., xi ⊇ { }) and xi−1 ∈ [+F, +G] (i.e., xi−1 ⊇
{+F, +G}) and xi xi−1 is defined, then yi = xi xi−1

 • otherwise yi = xi.

The rule in (24), as it is interpreted in (25), is a func-
tion from strings to strings that targets every segment
that appears to the right of {+F, +G} (since the natural
class defined by [] contains all possible segments and
the natural class defined by [+F, +G] contains only the
segment{+F, +G}). The rule attempts to unify these tar-
gets with {+F, +G}.

However, the effect of this unification on the target is
sometimes vacuous (and the rule application is vacuous),
when the target segment in an input string is the segment
{+F, +G} itself. The rule application is also vacuous when
the unification is undefined because the union of a target
segment and {+F, +G} is inconsistent: unification fails
and thus the segment remains unaffected by the rule. The
only noticeable (non-vacuous) application of the rule will
occur when the target is the empty segment. The relevant
possible mappings are presented in (26), where we con-
sider minimal two-segment sequences as inputs to the rule.

(26) Three scenarios for a two-segment sequence of the
form {+F, +G}X

 • Where X is {}:
 {+F, +G}{ } {+F, +G}{+F, +G} (unification
applies and fills in values of input{})

 • Where X is{+F, +G}:
{+F, +G}{+F, +G} {+F, +G}{+F, +G}
(unification applies vacuously, {+F, +G}
{+F, +G}={+F, +G})

 • Where X is {+F, –G}, {–F, +G} or {–F, –G}
Unification failure---X remains unchanged
because set union yields an inconsistent set (see
(25) condition 2 above, and the rule semantics in
Bale and Reiss, 2018).

 1. {+F, +G}{+F, –G} {+F, +G}{+F, –G},
since {+F, +G} {+F, –G} is undefined.

 2. {+F, +G}{–F, +G} {+F, +G}{–F, +G},
since {+F, +G} {–F, +G} is undefined.

 3. {+F, +G}{–F, –G} {+F, +G}{–F, –G},
since {+F, +G} {–F, –G} is undefined.

Hence, although the rule intensionally targets all
segments to the immediate right of {+F, +G}, the only
time the output is different from the input is when the seg-
ment to the right of {+F, +G} is the empty set.

This example differs from the Turkish illustration with
/t, D, d/ in two ways. First, there are two features involved
in the rule, not just one, and second, the second argument
of the unification operation happens to be identical to the
segment defining the rule environment, in contrast to the
condition in Turkish that +VoiCe is supplied in Onsets.
Despite these differences, the logic of the two examples
is identical with respect to the mechanics of unification.

4.3. Do we really want to unify segments with
non-singleton sets?

In section 4.2 we unified segments with a set contain-
ing two valued features. We assumed that the toy language
in question L2 had only five segments, four that are fully
specified and one that is completely unspecified. Let’s
consider a language that contains all nine of the definable
segments given the features F and G. We’ll assume that
this L2 has the same rule as L1, repeated in (27):

(27) [] {+F, +G}/[+F, +G]___

Here are some cases that arise when the rule applies
to strings containing some of the nine definable segments
preceded by{+F, +G}:

(28) Some applications

 a. {+F, +G}{ } {+F, +G}{+F, +G}
Both valued features are filled in.

 b. {+F, +G}{+F, +G} {+F, +G}{+F, +G}
Unification is vacuous.

 c. {+F, +G}{–F, –G} {+F, +G}{–F, –G}
Unification fails so target is unchanged.

 d. {+F, +G}{+G} {+F, +G}{+F, +G}
Unification fills in+F, but is vacuous for +G

 e. {+F, +G}{–G} {+F, +G}{–G}
Unification fails so target is unchanged

The logic for all five cases should be clear, but pay
particular attention to (e). Since the union {–G}∪{+F,
+G} = {+F, +G, –G}, which is inconsistent, it fol-
lows that the unification {–G} {+F, +G} is undefined.
Therefore, the output string must be the same as the input
string, namely{+F, +G}{–G}.

We propose that this might be the wrong result for
modelling human phonology. We suspect that a formal
system that would yield {+F, +G}{+F, –G} in such a
case is correct. In other words, the conflict with respect to
the feature G should not prevent the addition of the valued
feature +F via unification. A simple way to achieve this
is to suppose that the second argument in a phonologi-
cal unification must be a singleton set, and thus rule (27)
needs to be reformulated in terms of a sequence of two
rules, each containing unification with a singleton set. In

https://doi.org/10.3989/loquens.2019.065

8 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

the remainder of this section we sketch out such a system
and show how it achieves the effect we are claiming bet-
ter reflects the human language faculty. In section 5 we
work with data sets and toy languages based on Turkish
vowel harmony phenomena to illustrate the kinds of lan-
guages we specifically want to rule out. We cannot prove
the non-existence of such languages, but if no examples
are attested, our explicit proposal might explain why.

To give a flavour of the kind of system we intend to
develop, let’s take a closer look at case (e) in (28) above. As
it is, the output of the unification process is the same as the
input. However, if we divide the unification process into
two rules, one that first attempts to unify the target with
{+F} and then another that then attempts to unify the target
with {+G}, the output for case (e) would be different even
though the output for all the other cases would be the same.
For example, if we first unify {–G} with {+F} we get {+F,
–G} as an output. Then, if we try to unify this output with
{+G}, the unification will fail. As a result, the final output
would be {+F, –G} rather than just {–G}. Note that we get
the same result if we change the order of the two unifica-
tion processes. If we first try to unify {–G} with{+G}, the
result is undefined, so we get the output {–G}. If we then
unify this output with {+F}, the result is{+F, –G}.

We have not proved that this is the correct result, but
rather illustrated a distinction that leads to different out-
puts. However, we will make a strong empirical claim and
propose the following as a property of phonological rules:

(29) Singleton set restriction on unification (SSR):
The second argument of unification in a phonologi-
cal rule, the one that corresponds to the structural
change, is always a singleton set.

In other words, unification must proceed in a deriva-
tion one feature at a time. If the SSR is valid then we
need to reformulate the processes expressed in (28a-e).
First let’s decompose rule (27) to conform to the SSR in
(29). We will arbitrarily order unification with +F before
unification with+G.

(30) Reformulation of (27) using SSR:

 • R1: [] {+F}/[+F, +G]___
 • R2: [] {+G}/[+F, +G]___

Each rule is a function from strings to strings, so we
can compose the rules in normal fashion. For example, we
can apply R1 to a string abcd and then apply R2 to the out-
put: R2 ° R1 (abcd). Let’s redo the derivations in (28) using
the two rules of (30) instead of the one in (27), which we
now propose is not a licit human phonological rule at all:

(31) Some applications

 a. R2°R1 ({+F, +G}{ }) {+F, +G}{+F, +G}

 Both valued features are filled in: +F is filled in
on the righthand segment by R1 and +G is filled
in on the righthand segment by R2.

 b. R2°R1({+F, +G}{+F, +G}) {+F, +G}{+F, +G}

 Each rule yields a vacuous unification.

 c. R2°R1({+F, +G}{–F, –G}) {+F, +G}{–F, –G}

 Each unification fails so target is unchanged.

 d. R2°R1 ({+F, +G}{+G}) {+F, +G}{+F, +G}

 Unification fills in +F, but is vacuous for +G

 e. R2°R1 ({+F, +G}{–G}) {+F, +G}{+F, –G}

 Unification is vacuous for +F (by R1) and unifi-
cation fails for G, so –G on the target remains.

The mappings in (31) are identical to those in (28)
aside from case (e).

It is crucial to note that the SSR applies only to struc-
tural changes in unification rules. The rules above in (30)
have two valued features specified in the environment
segment, and thus are different from the following rules
which each have a single feature specified in the environ-
ment segment:

(32) Less specific environment specifications:

 • RA: [] {+F}/[+F]___
 • RB: [] {+G}/[+G]___

The reader can confirm that R1 in (30) applied to the
string {+F, −G}{ } yields the identical string{+F, −G}{ },
whereas RA in (32) applied to the same input yields {+F, −G}
{+F}. This is because RA does not require that the preced-
ing segment be +G, but R1 does. Think of R1 as a rule that
spreads +VoiCe from segments that are +CoNtiNuaNt,
whereas RA is like a rule that spreads +VoiCe regardless of
other feature values.

4.4.	Unification	and	the	SSR	with	`-notation

We now demonstrate how the system we propose
interacts with α-notation. The SSR allows for the single
member of the set denoting the structural change to be
a feature with a Greek letter variable as its value. This
variable denotes identity with other tokens of the same
variable elsewhere in the rule:

(33) [+Cor, −Son, −CoNt] {αVoiCe }/___[αVoiCe]

This rule says to unify each coronal stop with the set
containing the voicing value of the following segment.
We have to consider six cases, namely strings in which
each segment /t, D, d/ occurs before a voiced segment,
and strings in which each occurs before a voiceless seg-
ment. Let’s first consider what happens when each coro-
nal stop occurs before a voiced segment:

(34) Unification of /t, D, d/ with {+VoiCe}

 a. Input /matba/: /t/ {+VoiCe} is undefined, so
output is [matba]

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 9

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

 b. Input /maDba/: /D/ {+VoiCe} is [d] so output
is [madba]

 c. Input /madba/: /d/ {+VoiCe} is [d], so output
is [madba]

In (34a), unification fails, because /t/ is – VoiCe, so the
union of /t/ with {+VoiCe} is not consistent. Therefore,
the output string has [t]. In (34b), unification adds the val-
ued feature {+VoiCe} to /D/, yielding [d] in the output
string. In (34c), unification does not fail, but it is vacuous,
since /d/ ∪{+VoiCe} is just [d].

Now let’s see what happens before a voiceless
segment:

(35) Phonological unification illustrated with {−VoiCe}

 a. Input /matpa/: /t/ {−VoiCe} is [t] so output is
[matpa]

 b. Input /maDpa/: /D/ {−VoiCe} is [t] so output
is [matpa]

 c. Input /madpa/: /d/ {−VoiCe} is undefined, so
output is [madpa]

In (35a), unification is vacuous since /t/ is already
−VoiCe, so the output is [t]. In (35b) unification adds the
feature −VoiCe to /D/, yielding [t]. In (35c) unification fails,
because /d/ is−VoiCe, so the union of /d/ with {−VoiCe} is
not consistent. Therefore, the output string has [d].

5. THE SSR AND VOWEL HARMONY

We will now illustrate the implications of the SSR
using something closer to attested data. Our ultimate goal
is to explore what would be a possible empirical argu-
ment for or against the SSR—i.e., evidence for whether
there exist unification rules that fill in multiple features on
an underspecified segment while ‘bypassing’ less under-
specified segments.

5.1. Turkish vowel harmony

Let’s consider a limited dataset illustrating Turkish
vowel harmony, one that only contains monosyllabic
roots and words with a single suffix. For example, notice
the vowel alternations in (36).

(36) Less specific environment specifications:

Nom. sg Nom. PL gLoss

ip ipler ‘rope’

[–BaCk]
ek ekler ‘joint’
gül güller ‘rose’
öç öçler ‘revenge’

kıl kıllar ‘body hair’

[+BaCk]
sap saplar ‘stalk’
pul pullar ‘stamp’
son sonlar ‘end’

The vowel in the plural suffix always surfaces as
–HigH and –rouNd, but it agrees with the value for BaCk
on the preceding vowel. One way to represent the under-
lying phonological form of this suffix is to posit a vowel
/A/ which is underspecified for BaCk. We might imagine
that the value for this feature could be filled in by a unifi-
cation rule that targets /A/, something like this:

(37) Unify the segment /A/ with {αBaCk} when the
preceding vowel is specified {αBaCk}.

However, we now know that any rule that targets /A/
must target the natural class that includes /e/ and /a/ as
well, (since /A/⊆/e/ and/A/⊆/a/) so the correct formula-
tion is more like this:

(38) Rule targeting natural class:

 [−HigH, –rouNd] {αBaCk}
/when preceding vowel is [αBaCk]

The effect of the rule on suffixes with fully specified
underlying vowels will be vacuous.

It turns out that alternating suffixes with +HigH vow-
els also assimilate with respect to BaCk on a preceding
vowel:

Nom. sg geN. sg gLoss
root VoweL
CLass

ip ipin ‘rope’ [–BaCk, –rouNd]
ek ekin ‘joint’

gül gülün ‘rose’ [–BaCk, +rouNd]
öç öçün ‘revenge’

kıl kılın ‘body hair’
[+BaCk, –rouNd]

sap sapın ‘stalk’

pul pulun ‘stamp’
[+BaCk, +rouNd]

son sonun ‘end’

The high suffix vowel in these genitive forms also
assimilates to the value of BaCk on the preceding vowel,
just like the non–nigh vowel in the plural. Rule (38) can
be revised to apply to this vowel as well, by removing
the specification that the target vowel must be +HigH
and –rouNd:

(39) [] {αBaCk }/
when preceding vowel is specified [αBaCk]

We can thus treat BaCk harmony in high and non−high
vowels as a single process.

The non-high vowel of the plural suffix is always,
−rouNd, but the high vowel of the genitive suffix also
alternates with respect to the feature rouNd. Let’s assume
that underlyingly this high vowel is /I/, specified as
+HigH, but unspecified for both rouNd and BaCk. We
need another rule to fill in values for rouNd:

https://doi.org/10.3989/loquens.2019.065

10 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

(40) [] {αrouNd }/
when preceding vowel is specified [αrouNd]

Rounding harmony does not affect the vowel of the plural
suffix, but we don’t need to specify that the targets of the
rounding rule are+HigH, since unification of sets contain-
ing conflicting values of rouNd will fail. So, application
of a rule based on unification of any value for rouNd
with the −rouNd of /A/ will be vacuous (either because
/A/ is vacuously unified with{−rouNd}, or because
unification of /A/ with {+rouNd} fails due to inconsis-
tency). Note that the two rules in (39) and (40) happen to
obey the SSR.

Unconstrained by the SSR, we could posit an alterna-
tive to the two rules (39) and (40). We could propose to
use (38) to fill in BaCk on /A/ and then use a single rule to
fill in both underspecified features on an alternating high
vowel suffix /I/, something like (41):16

(41) α

β

α

β

+

H
B

R

when preceding vowel is specified
B

R

IGH
ACK

OUND

ACK

OUND

However, this would treat the BaCk assimilation as being
due to two separate rules, a result that we think misses a
critical generalization.

In contrast, by insisting that rules are formulated in
accordance with the singleton set restriction, BaCk assimi-
lation would be due to a single process. To see how, let’s go
through a derivation. Consider again the rules in (39, 40),
repeated in (42):

(42) Turkish with simple rules

α

α

{ }

R . B

when preceding vowel is specified B
a ACK

ACK

{ } α

α

R . R

when preceding vowel is specified R
b OUND

OUND

The rules can apply in either order, but we illustrate
with BaCk assimilation applied first. The formula in (43)
shows the composition of the two rules applied to the
input /ip-lAr/. This composed function has the effect of
first ‘attempting’ to add a value for BaCk to each target
segment, and then attempting to add a value for rouNd,
with one application of unification for each feature.

16 The environment could equivalently be specified as “when preceding
vowel is a superset of {αBaCk, βrouNd }.”

(43) Rb ° Ra (ip-lAr)

In the derivations below, the abbreviation ‘v.u.’
refers to ‘vacuous unification’, for example, when a
–rouNd vowel unifies with {−rouNd}. The abbrevia-
tion ‘u.f.’ refers to ‘unification failure’, another kind of
vacuous application which occurs, for example, when a
–rouNd vowel unifies with{+rouNd}. The tables show
only the features that get added to the suffix vowels
by each rule.

(44) Turkish plural derivations: /A/ is {−HigH, –rouNd}

UR ip-
lAr

ek-
lAr

gül-
lAr

öç-
lAr

kıl-
lAr

sap-
lAr

pul-
lAr

son-
lAr

 �
{αBk}

–Bk –Bk –Bk –Bk +Bk +Bk +Bk +Bk

 �
{αrd}

v.u. v.u. u.f. u.f. v.u. v.u. u.f. u.f.

SR ipler ekler güler öçler kıllar saplar pullar sonlar

So, in the course of the derivation, the vowel of /ip-lAr/
starts out as{−HigH, −rouNd}, then receives {−BaCk}
via rule Ra, and is unaffected by rule Rb. It surfaces as [e].
Let’s see what happens with the suffix containing /I/:

(45) Turkish genitive derivations: /I/ is {+HigH}

UR ip-In ek-In gül-In öç-In kıl-In sap-In pul-In son-In
 {αBk} –Bk –Bk –Bk –Bk +Bk +Bk +Bk +Bk

 {αrd} –rd –rd +rd +rd –rd –rd +rd +rd

SR ipin ekin gülin öçin kılın sapın pulun sonun

In the course of the derivation, the suffix vowel of
/ip-In/ starts out as {−HigH}, then receives –BaCk via
rule Ra, and -rouNd via rule Rb. It surfaces as [i].

5.2. Hypothetical languages: Purkish and Surkish

We have just shown that we can derive the surface
forms of Turkish using one rule per harmonizing fea-
ture. In other words, the SSR is not too weak to model
Turkish. Since the SSR restricts set of possible gram-
mars (i.e., any grammar that obeys the SSR is also a
grammar in a phonological system that does not enforce
the SSR), we will adopt the SSR as a guiding principle
unless the phonological data can be better explained by
adopting more complex rules. In this section, we discuss
some of the differences between a phonological theory
that is constrained by the SSR and one that is not. We
begin by first presenting a possible variation of Turkish,
which we call Purkish. Purkish is identical to Turkish
except that it has a third underlying underspecified
vowel, namely /U/={+HigH, +rouNd}. Critically /U/
has no specification for BaCk. We hypothesize that

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 11

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

this vowel also undergoes assimilation with respect to
the previous vowel (i.e., it surfaces as having the same
BaCk specification as the previous vowel). As we dis-
cuss below, not only do rules that obey the SSR provide
a better account of Purkish, but the analysis reveals the
limits of the SSR.

Let’s consider some details of Purkish. By hypoth-
esis, this hypothetical language has the same eight
surface vowels as Turkish, as well as the underlyingly
partially specified /A/ and /I/. Also by hypothesis,
Purkish /A/ and /I/ show the same exact alternations
as their Turkish counterparts in the same environ-
ments. It is thus possible to posit the same rules for the
two languages in order to account for this alternation.
However, as mentioned above, Purkish also has another
partially specified vowel /U/, let’s say realized on a
comitative suffix /-Uk/. Critically, /U/ is more specified
than /I/. Note that there is no way to target, in a rule,
the vowel /I/ without also targeting the more specified
vowel /U/, because any natural class that contains /I/,
also contains /U/.

Now, if /U/ assimilates with respect to the BaCk speci-
fication of the previous vowel (as mentioned above), it is
relevant to note that only one of the rule systems hypoth-
esized in the previous section will be able to account for
the input to output mapping. For example, consider a deri-
vation with the two rules that obey the SSR in the deriva-
tion table in (46).

(46) With Singleton Set Restriction

Purkish comitative derivations: /U/ is {+HigH, +rouNd }

UR ip-
Uk

ek-
Uk

gül-
Uk

öç-
Uk

kıl-
Uk

sap-
Uk

pul-
Uk

son-
Uk

 {α
Bk}

−Bk −Bk −Bk −Bk +Bk +Bk +Bk +Bk

 {α
rd}

u.f. u.f. v.u. v.u. u.f. u.f. v.u. v.u.

sr ipük ekük gülük öçük kıluk sapuk puluk sonuk

The vowel in the suffix /-Uk/ always surfaces with the
feature +rouNd, since that is the underlying value, unlike
the underlying /I/ which is unspecified for rouNd. As a
result, the rule that ‘attempts’ to unify /U/ with the rouNd
specification of the previous vowel will always have no
effect, either due to unification failure or due to vacuous
unification. In contrast, /U/ will be affected by the rule
that ‘attempts’ to unify it with the BaCk specification of
the previous vowel, since /U/ is underspecified for this
feature. The end result is a system that maps /U/ to [ü]
or [u].

Let’s reconsider the same underlying forms with
respect to the rules in the previous section that violated
the SSR. The effect of these rules is quite different, as
outlined in (41).

(47) No Singleton Set Restriction

Purkish comitative derivations: /U/ is {+HigH, +rouNd }

UR ip-
Uk

ek-
Uk

gül-
Uk

öç-
Uk

kıl-
Uk

sap-
Uk

pul-
Uk

son-
Uk

α

β

B

R

K

D
u.f. u.f. −Bk

+rd
−Bk
+rd

u.f. u.f. +Bk
+rd

+Bk
+rd

SR ipUk ekUk gülük öçük kılUk sapUk puluk sonuk

The SRs in (47) have three different mappings of
underlying /U/—it maps /U/ to [ü], [u], and [U]. If Purkish
does indeed have the surface forms represented in (46),
then the rule in (47) is unable to derived the right result.
To get the right result and maintain the rule that violates
the SSR, one would need to posit a further rule to provide
a BaCk value on the suffix of roots that are –rouNd. This
seems like an unnecessary complication to our grammar.

However, not only is the added complexity a problem,
the mappings in (47) also demonstrate a key limitation
of a grammar that obeys the SSR. Following our natural
class logic, it is impossible to fill in values of BaCk on the
less-specified /I/ but not do so on the more specified /U/.
In other words, a system with the input-output mappings
of (47), call it Surkish, is not a possible human language
if we assume the SSR.17 Thus, to argue against the SSR,
one would have to demonstrate that input to output map-
pings like in (47) provide a better analysis of some attested
language. We do not know of any examples of such lan-
guages, and hence we propose adopting the SSR as a work-
ing hypothesis for a restricted model of phonological UG.

6. COMPENSATORY LENGTHENING AS TOTAL
ASSIMILATION

Let’s return to our example of compensatory lengthen-
ing in L1 above, where we saw that unification with full
feature sets occurred in forms (12a), (12e) and (12g). The
input-output mappings in (12) are repeated in (48) below:

(48) Compensatory lengthening for deletion of nasals in
coda

 i. tan-so ta:so
 j. tan-upi tanupi
 k. tak-so takso
 l. tak-upi takupi
 m. tem-so te:so
 n. tem-upi temupi
 o. tum-so tu:so
 p. tum-upi tumupi

17 This claim relates to the controversial issue of segment
‘closeness’ or rules ‘skipping’ segments, also known as
saltations (Reiss, 1995, 1996, 2019; Hayes and White, 2015,
and references therein).

https://doi.org/10.3989/loquens.2019.065

12 • Alan Bale, Charles Reiss, David Ta-Chun Shen

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

The first rule we need deletes all the features of a coda
nasal, creating an empty segment { }, as we saw in (14),
repeated in (49):

(49) [+NasaL]–V/ in Coda

This rule creates the empty segment from nasals that
are already to the right of a vowel by virtue of being in
coda position. Strings containing intervocalic nasals,
which are presumably in onset position, are unaffected by
this rule.

To model compensatory lengthening of the vowel as
total assimilation, the fully underspecified segments cre-
ated by rule (49) would need to take on whatever val-
ues the immediately preceding vowel segments have.
There is more than one member in the class of segments
defining the environment. In our examples, sometimes
it’s the features of /a/ that get filled in, and sometimes
it’s the features of /e/ that get filled in, and sometimes
it is the features of /u/ that get filled in. We can use α
–notation to fill in the correct values by composing the
unification rules for each vowel feature. Of course, we
need to extensionally target the derived empty segments
that result from rule (49), but our unification rules will
have to target all segments (since this is the only natural
class that the empty segment belongs to). However, for all
fully specified segments targeted by the rule, unification
either fails or is vacuous, so the outputs of the unification
rules are identical to the inputs.18

Let’s spell out this process in more detail with formal
rules. If we suppose that the set of all features is {F1…Fn},
then we can understand the process of implementing total
assimilation as follows. If there were only one feature, the
rule would be this:

(50) R1=[] {αF1 }/ [αF1]___

So for each feature Fi there is a rule of this form:

(51) Ri=[] {αFi }/[αFi]___

If there were just two features available, total assimi-
lation would be expressed as the composition of the two
rules R1 and R2 in either order: R2 ° R1 or R1 ° R2, with both
orders giving identical results. Obviously, we can gener-
alize this for rules R1 to Rn for any number of features.
If there are five features, then total assimilation involves
composition of the five rules in some order, where once
again the order of composition does not matter.

Since the order of composition does not matter, let’s
adopt an order based on the number of features in our

18 We make the non-trivial assumption here that all underlying segments
in the language are fully specified for all features. As stated, the rules
below will attempt to unify the features of /a/ with the /k/ of takso, for
example, but each rule application will be vacuous, since there are no
values to fill-in on /k/, by hypothesis. The potentially more reasonable
assumption that a segment like /k/ is underspecified even on the surface
for vowel features like rouNd and BaCk significantly complicates the
analysis, a topic that will have to await further research.

inventory. Let’s assume that the n features are ordered
from 1 to n and the respective rules are applied in the
same order:19

(52) Composition of vowel feature copy rules:
Rn ° Rn−1… R2 ° R1

For example, perhaps F1 is rouNd, F2 is HigH, F3 is
atr, F4 is BaCk, F5 is Low, and so on. We’ll call the sub-
traction rule in (49) R0. (Recall that this rule needs to apply
first in order to derive the empty segment before applying
the assimilation rules.) Now the derivation from the string
/tumso/ to the surface form tu:so in (48g) involves some-
thing like the following changes in the target segment of
subsequent rules:

(53) Derivation: Rn ° Rn–1
…

 R2 ° R1 ° R0 (tumso) [tu:so]

UR /tumso/
R0: Substract V from

coda [−NasaL]
tu{ }so (coda m loses

all features)

R1: [] {αrouNd} tu{+rouNd} so (because u
is +rouNd)

R2: [] {αHigH}
+

+

tu

R

H
so

OUND

IGH
(because u is
+HigH)

R3: [] {αatr}
+

+

+

tu

R

H

A

so

OUND

IGH

TR

(because u is
+atr)

R4: [] {αBaCk}
+

+

+

+

tu

R

H

A

B

so

OUND

IGH

TR

ACK

(because u is
+BaCk)

R5: [] {αLow}
+

+

+

+

−

tu

R

H

A

B

L

so

OUND

IGH

TR

ACK

OW

(because u is
−Low)

SR [tuuso]=[tu:so]

19 The logic remains the same even if only rules for some of the n
features are used.

https://doi.org/10.3989/loquens.2019.065

Sets, rules and natural classes: [] vs. { }• 13

Loquens, 6(2), December 2019, e065, eISSN 2386-2637. https://doi.org/10.3989/loquens.2019.065

Of course, the target for each of the unification rules
is the natural class of all segments, but the only place we
see non-vacuous effects of unification is in the ever-more-
specified, formerly-coda-nasal segments, the ones that
lost all their features via the first rule.

It may seem dissatisfactory that there is not a single rule
of total assimilation at work when we see a process like
compensatory lengthening, but rather a composition of n
rules for each of the n features. However, such dissatisfac-
tion is misguided. First, our approach treats total assimila-
tion as just a special case of partial assimilation, and we
know that there are many cases of partial assimilation—
assimilation of place features and assimilation of laryngeal
features, for example. In fact, treating both processes as
involving the same types of rules makes a key prediction,
namely there cannot be total assimilation without there
also being partial assimilation (since rules that “fill in” the
empty segment will also “fill in” partially underspecified
segments). Second, there is an implicit mistake in won-
dering why all the individual assimilations happen to be
ordered consecutively in a case of total (or multiple) assim-
ilation. In fact, it is the lack of evidence that other rules
intervene among the individual assimilations that creates
the illusion that they constitute a single process.

7. CONCLUSIONS

Our set-theoretic treatment of segments provides
mechanisms to address the problem of referring to under-
specified segments, including the empty segment, while
still maintaining the principle that rules target natural
classes. We hypothesize a rule system that unifies under-
specified segments with valued features in a piecewise
fashion—one unification rule per feature. Critical for our
purposes, unification is a partial operation, and it fails
whenever its outcome would be inconsistent. The result
of this failure is that non-vacuous unification applies
only when filling in unspecified values. We have sug-
gested that these simple formal techniques are applicable
to a range of widely discussed phonological phenomena.
In phonological terms these processes correspond to phe-
nomena that go by the names of assimilation, compensa-
tory lengthening, copy vowels and templatic morphology.
By attempting to unify these various phenomena we fur-
ther the goal of linguistic theory “to abstract from the
welter of descriptive complexity certain general princi-
ples governing computation that would allow the rules of
a particular language to be given in very simple forms”
(Chomsky, 2000).

REFERENCES

Bale, A., Papillon, A., & Reiss, Ch. (2014). Targeting underspeci-
fied segments: A formal analysis of feature changing and
feature filling rules. Lingua, 148, 240–253. DOI: http://
dx.doi.org/10.1016/j.lingua.2014.05.015

Bale, A., & Reiss, Ch. (2018). Phonology: A Formal Introduction.
Cambridge, MA: MIT Press.

Bendjaballah, S., & Haiden, M. (2008). A typology of empti-
ness in templates. In J. Hartmann, V. Hegedus, & H. van
Riemsdijk (Eds.) Sounds of Silence: Empty Elements in
Syntax and Phonology (pp. 23–59). Amsterdam: Elsevier.

Borrelli, D. A. (2013). Raddoppiamento Sintattico in Italian.
A Synchronic and Diachronic Cross-dialectical Study.
New York: Routledge.

Chomsky, N. (2000). Language as a natural object. In New
Horizons in the Study of Language and Mind (pp. 106–133).
Cambridge: Cambridge University Press.

Chomsky, N., & Halle, M. (1968). The Sound Pattern of English.
New York: Harper & Row.

Côté, M.-H. (2008). Empty elements in schwa, liaison and
h-aspiré: The French Holy Trinity revisited. In J. Hartmann,
V. Hegedus, & H. van Riemsdijk (Eds.) Empty Elements in
Syntax and Phonology (pp. 61- 103). Amsterdam: Elsevier.

Dell, F., & Elmedlaoui, M. (1985). Syllabic consonants and syl-
labification in imdlawn tashlhiyt berber. Journal of African
Languages and Linguistics, 7, 105–130. DOI: http://dx.doi.
org/10.1515/jall.1985.7.2.105

Flemming, E. (2005). Deriving natural classes in phonology.
Lingua, 115, 287–309. DOI: http://dx.doi.org/10.1016/j.
lingua.2003.10.005

Halle, M. (1964). On the bases of phonology. In J. J. Katz,
& J. Fodor (Eds.) The Structure of Language (ch. 9, pp.
324–333). Englewood Cliffs, NJ: Prentice-Hall.

Hayes, B., & White, J. (2015). Saltation and the p-map.
Phonology, 32, 267–302. DOI: http://dx.doi.org/10.1017/
S0952675715000159

Hyman, L. (1985). A Theory of Phonological Weight. Dordrecht:
Foris. DOI: http://dx.doi.org/10.1515/9783110854794

Inkelas, Sh. (1995). The consequences of optimization for
underspecification. In J. Beckman (Ed.), Proceedings
of the North East Linguistic Society, 25 (pp. 287–302).
Philadelphia, PA: University of Pennsylvania Graduate
Linguistic Student Association.

McCarthy, J. (1988). Feature geometry and dependency:
a review. Phonetica, 45, 84–108. DOI: http://dx.doi.
org/10.1159/000261820

Mielke, J. (2008). The Emergence of Distinctive Features. Oxford:
Oxford University Press.

Peterson, G. E., & Harary, F. (1961). Foundations of phonemic
theory. In R. Jakobson (Ed.) Structure of Language and Its
Mathematical Aspects. Proceedings of Symposia in Applied
Mathematics, 12 (pp. 139–165). Rhode Island: American
Mathematical Society. DOI: http://dx.doi.org/10.1090/
psapm/012/9973

Reiss, Ch. (1995). A Theory of Assimilation, with Special Reference
to Old Icelandic Phonology. Doctoral Dissertation,
Harvard University, Department of Linguistics.

Reiss, Ch. (1996). Deriving an implicational universal in a con-
strained OT grammar. In K. Kusumoto (Ed.), Proceedings
of North East Linguistic Society, 27 (pp. 303–318).
Cambridge, MA: Harvard University & MIT Graduate
Linguistic Student Association.

Reiss, Ch. (2003). Quantification in structural descrip-
tions: Attested and unattested patterns. The Linguistic
Review, 20, 305–338. DOI: http://dx.doi.org/10.1515/
tlir.2003.012

Reiss, Ch. (2019). Are Saltations Real? Ms. Concordia University.
Sagey, E. C. (1986). The Representation of Features and

Relations in Nonlinear Phonology. Doctoral Dissertation,
Massachusetts Institute of Technology, Cambridge, MA.

Shen, D. T.-Ch. (2016). Precedence and Search: Primitive
Concepts in Morpho-phonology. Doctoral Dissertation,
National Taiwan Normal University, Taipei.

Trommer, J. (2015). Moraic affixes and morphological colors in
Dinka. Linguistic Inquiry, 46, 77–112. DOI: http://dx.doi.
org/10.1162/LING_a_00176

https://doi.org/10.3989/loquens.2019.065
http://dx.doi.org/10.1016/j.lingua.2014.05.015
http://dx.doi.org/10.1016/j.lingua.2014.05.015
http://dx.doi.org/10.1515/jall.1985.7.2.105
http://dx.doi.org/10.1515/jall.1985.7.2.105
http://dx.doi.org/10.1016/j.lingua.2003.10.005
http://dx.doi.org/10.1016/j.lingua.2003.10.005
http://dx.doi.org/10.1017/S0952675715000159
http://dx.doi.org/10.1017/S0952675715000159
http://dx.doi.org/10.1515/9783110854794
http://dx.doi.org/10.1159/000261820
http://dx.doi.org/10.1159/000261820
http://dx.doi.org/10.1090/psapm/012/9973
http://dx.doi.org/10.1090/psapm/012/9973
http://dx.doi.org/10.1515/tlir.2003.012
http://dx.doi.org/10.1515/tlir.2003.012
http://dx.doi.org/10.1162/LING_a_00176
http://dx.doi.org/10.1162/LING_a_00176

	_Ref156041841

