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ABSTRACT: It is known that auditory information is continuously processed both during wakefulness and sleep.
Consistently, it has been shown that sound stimulation mimicking tinnitus during sleep decreases the intensity of
tinnitus and improves the patients’ quality of life. The mechanisms underlying this effect are not known. To begin to
address this question, eleven patients suffering from tinnitus were stimulated with sound mimicking tinnitus at dif-
ferent sleep stages; 4 were stimulated in N2, 4 in stage N3 (slow waves sleep) and 3 in REM sleep (stage with Rapid
Eyes Movements). Patients’ sleep stage was monitored through polysomnography, for sound stimulation application.
Tinnitus level reported by subjects were compared the days before and after stimulation and statistically analyzed
(paired Student ¢ test). All patients stimulated at stage N2 reported significantly lower tinnitus intensity the day after
stimulation, while none stimulated during stage N3 and only one out of three stimulated during REM sleep showed
changes. These results are consistent with studies showing that sound stimulation during N2 (sleep stage with spin-
dles) changes power spectrum and coherence of electroencephalographic signals, and suggest that the N2 sleep stage
is a critical period for reducing tinnitus intensity using this therapeutic strategy, during which auditory processing
networks are more malleable by sound stimulation.

Keywords: central auditory processing; sleep spindles; sleep stages N2, N3, REM.

RESUMEN: Impacto de la estimulacion sonora durante diferentes etapas del suerio en pacientes con acufeno.— Es
sabido que la informacion auditiva se procesa continuamente durante la vigilia y el suefio. Se ha demostrado que la
estimulacion con sonido que imita el tinnitus, aplicada durante el suefio, disminuye la intensidad del tinnitus y mejora
la calidad de vida de los pacientes. Los mecanismos que subyacen a esta mejoria no se conocen, aunque en la etapa de
suefio con husos (N2) fueron demostrados los principales cambios en los espectros de potencia y la coherencia en las
ondas electroencefalograficas durante la estimulacion sonora. Once pacientes que padecen tinnitus fueron estimulados
por sonido (imitando el tinnitus) en diferentes etapas del sueflo; 4 fueron estimulados en N2, 4 en la etapa N3 (suefio de
ondas lentas) y 3 durante el sueiio REM (estadio con movimientos oculares rapidos). Los pacientes fueron registrados
con una polisomnografia, para el diagndstico de etapas del suefio y la aplicacion de la estimulacion del sonido. Los
valores de intensidad del tinnitus se compararon los dias anterior y posterior a la estimulacion y se analizaron estadisti-
camente (prueba t de Student pareada). Todos los pacientes estimulados en la etapa N2 mostraron una disminucion
estadisticamente significativa en la intensidad del tinnitus el dia después de la estimulacion, mientras que ninguno de
los pacientes estimulados en la etapa N3 mostr6 cambios en la intensidad, y solo uno de los tres estimulados durante el
suefio REM tuvo cambios. Los resultados sugieren que la etapa de suefio N2 seria el periodo en que el sonido estimu-
lante interactuaria con las redes de procesamiento auditivo, reduciendo la intensidad del tinnitus.

Palabras clave: procesamiento auditivo central; husos de suefio; etapas N2, N3 y REM.
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1. INTRODUCTION

From Aristotle to our days, it has been generally
accepted that sensory integration is not abolished by sleep
(Aristotle, trans. in 1955; Burton, Harsh, & Badia, 1988;
Halasz, 1988; Maury, 1878). Among sensory modali-
ties, audition is particularly important as a telereceptor
that remains open during sleep (Velluti, 1997, 2018).
The auditory input throughout the day is processed and
consolidated as a memory during sleep. Furthermore,
the Central Nervous System (CNS) continues process-
ing information that enters from the environment, since
the auditory system remains as a sentinel during sleep,
capable of receiving information, analyzing it, and gen-
erating a response. The maternal waking up by baby
crying is an example of stimuli considered significant
among information stored in memory detected and recog-
nized while asleep (Formby, 1967). Also hearing our own
name or a potentially dangerous sound (Halasz, Terzano,
Parrino, & Bodizs, 2004) can selectively induce wak-
ing. Furthermore, auditory contents are reported in 65 %
of dreams (Hobson, 1990; McCarley & Hoffman, 1981)
and sensory information can be incorporated into them
(Bastuji & Garcia-Larrea, 2005).

However, sensory processing during sleep has been
the subject of considerable controversy. Some stud-
ies have proposed a functional disconnect between the
cerebral cortex and external auditory input (Jones, 1991;
Steriade, 1997) supported by electrophysiological evi-
dence indicating changes in sensory processing at the
thalamic level (Pompeiano, 1970; Steriade, Gloor, Llinas,
Lopes da Silva, & Mesulam, 1990).

Furthermore, changes in neuronal activity linked to
sleep-wake cycle have been reported along the entire
auditory pathway in animals and humans (Issa & Wang,
2008; Pedemonte, Pefna, Morales-Cobas, & Velluti, 1994;
Pedemonte, Pefia, & Velluti, 1996b; Pedemonte, Pérez-
Perera, Pefia, & Velluti, 2001; Pefia, Pedemonte, Ribeiro,
& Velluti, 1992; Pefia, Pérez-Perera, Bouvier, & Velluti,
1999). Changes in the receptive field of cortical audi-
tory neurons (Edeline, Dutrieux, Manunta, & Hennevin,
2001) and in evoked responses (Erwin & Buchwald,
1986; Osterhammel, Shallop, & Terkildsen, 1985) were
also reported.

Additionally, hearing loss changes the sleep-wake
cycle and the sleep architecture (Cutrera et al., 2000;
Pedemonte, Pefia, Torterolo, & Velluti, 1996a). Also,
patients with intracochlear implants display differences
in sleep architecture and electroencephalographic sig-
nals when the implant is switched on or off (Velluti,
Pedemonte, Suarez, Bentancor, & Rodriguez-Servetti,
2010).

Despite there is a consensus that sleep is involved
in learning and memory processing (from Miiller &
Pilzecker, 1900; Jenkins and Dallenbach, 1924), the
role of each stage in the formation of different types of
memory remains an open question. While REM sleep has
been involved in the consolidation of working memory,
slow wave sleep has been linked to declarative memory

(Cipolli et al., 1988; Cipolli, Fagioli, Mazzeti, & Tuozzi,
2005). Slow oscillations of EEG have been involved in the
consolidation of long-term memory, in homeostatic regu-
lation of synaptic connections, and in the consolidation of
memory and post-sleep facilitation to codify new memo-
ries (Diekelmann & Born, 2010; Marshall, Helgadottir,
Molle, & Born, 2006; Tononi & Cirelli, 2006). Moreover,
the integrity and interaction of the different sleep stages
appears to be essential for memory consolidation (Cipolli,
2005; De Gennaro, Ferrara, & Bertini, 2000; Modlle,
Bergmann, Marshall, & Born, 2011).

Rhythmic acoustic stimulation induces K—complexes,
which are considered a “forerunner” of slow oscilla-
tions in slow waves sleep stage (De Gennaro, Ferrara,
& Bertini, 2000; Riedner, Hulse, Murphy, Ferrarelli, &
Tononi, 2011). Likewise, slow waves may be modulated
by low frequency auditory stimulation (Ngo, Claussen,
Born, & Malle, 2013). Studies with functional magnetic
resonance showed that auditory cortical activity is main-
tained during sleep but varies with stimulus significance
(Maquet et al., 2005; Portas et al., 2000).

Taking into account the aforementioned evidence and
the premise of subjective tinnitus as an anomalous per-
ception resulting from dysfunctionality of neuronal plas-
ticity (Andersson et al., 2000; Jastreboff, 1990; Melcher,
Sigalovsky, Guinan, & Levine, 2000), a therapeutic strat-
egy using acoustic stimulation during sleep was devel-
oped, resulting in decrease in the reported intensity of
tinnitus and improvement in the patients’ quality of life
(Drexler et al., 2016; Pedemonte, 2018; Pedemonte et al.,
2010). Despite the changes produced by this stimulation
protocol, the electrophysiological mechanisms underly-
ing these changes are not yet known.

Our aim was to explore whether neural network reor-
ganization induced by external stimulation is enhanced in
a particular sleep stage and be used more effectively to
reduce the perception of tinnitus.

2. METHODS

Eleven patients suffering idiopathic tinnitus
(6 females, 5 males; between 32 and 69 years old; tinnitus
evolution between 6 months and 20 years) participated in
this study. The inclusion criteria were: (1) subjects with
subjective idiopathic tinnitus (unilateral or bilateral), (2)
with a score in the Tinnitus Handicap Inventory above
17, and (3) experiencing tinnitus for more than 6 months.
The exclusion criteria were: (1) secondary tinnitus, (2)
subjects wearing hearing aids or having hearing loss
with indication of using them, (3) subjects undergoing
other treatments for tinnitus, (4) use of hypnotic or other
psychoactive drugs, (5) depression (Hamilton scale test
above 13) and (6) sleep disorders other than those caused
by tinnitus itself, for example patients with apnea, restless
legs syndrome, narcolepsy, and insomnia with other etiol-
ogy than tinnitus.

Four out of 11 subjects had monaural tinnitus (3 at the
left and 1 at the right). The spectral characteristics of the
perceived sound were a combination of bandpass noise
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and pure tones in 4 patients; a combination of pure tones
was referred by 4 and a pure tone alone by 3.

Combinations of pure tones, harmonic tone stacks,
white noise and/or bandpass noise were designed for
matching each patient’s perception by a highly custom-
ized sound. This sound was loaded on an iPod Touch and
delivered through personalized headphones created for
each patient. The stimulus intensity was adjusted to match
the intensity of the tinnitus measured right before falling
asleep. The device used was the same as in the clinical
trials (Drexler et al., 2016).

The stage of sleep in which each patient was stimu-
lated was selected at random; 4 patients were stimulated
in the Stage N2 (sleep stage characterized by spindles;
Figure 1.A), 4 in Stage N3 (sleep with slow waves;
Figure 2.A) and 3 in REM sleep (stage with Rapid Eye

Movements; Figure 3.A). Patients were recorded with a
complete Polysomnography, for sleep stages diagnosis
(from 10 p.m. to 6 a.m.). The Polysomnography (PSG,
traces in A) was carried out under a usual clinical pro-
tocol with a computerized polysomnograph, recording
10 electroencephalographic channels (frontals: F3, F4;
centrals: C3, C4; parietals: P3, P4; temporal: T3, T4, TS,
T6, following the internationally standard denomina-
tion), electrocardiogram (EKG), respiratory movements
(Resp), eye movements (EOG) electromyograms (EMG1
and EMG?2), and oximetry (not shown). A researcher
monitored the patient and performed online diagnosis
of sleep stages turning “on” and “off” the sound in the
corresponding sleep stage according to the protocol. The
total time of stimulation was the same in all patients
(90 minutes) always in the selected stage for each one.

Figure 1: Patients stimulated with sound mimicking tinnitus in stage N2 of sleep. A, 3 seconds of raw recorded traces, characteristic
of stage N2, 10 electroencephalographic channels (EEG frontal: F3, F4; centrals: C3, C4; parietal: P3, P4; temporal: T3, T4, T5, T6;
electrocardiogram (EKG); respiratory movements (Resp); eye movements (EOG); electromyogram (EMG1, masseter muscle, and
EMG?2, right leg). EEG shows characteristic spindles. B, three patients were stimulated during N2 in both ears (BL, MM and ADe)
and one (CH) was stimulated on the left ear only. Each bar represents the average and standard deviation of 10 tinnitus intensities
before (Pre) and after (Post) stimulation. Inset, (in CH) represents intensity averages of 5 values in the morning, before and after
sound stimulation. Student ¢ test, * p < 0.05, ** p <0.01. See explanation in the text.
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Figure 2: Patients stimulated with sound mimicking tinnitus in Stage N3 of sleep. Same display as in Figure 1.
A, Stage N3 characterized by slow waves. B, three subjects were stimulated in both ears (JC, Adi, and LF)
and one (WM) was stimulated in the right ear. No significant changes were found.
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Recordings were conducted after 2 to 4 nights of training
with the stimulation device. Both the sleep architecture
(temporal sequence of sleep stages) and the percent time
of each stage within the total sleep time and the num-
ber of awakenings (sleep efficiency) were within normal
ranges in the night of sound stimulation.

The intensity of tinnitus was measured 10 times
during the day prior to stimulation compared with the
intensity of tinnitus measured 10 times the day after stim-
ulation, and analyzed statistically (paired Student ¢ test).
The measurements had at least one hour of separation
between them. The criterion for measuring tinnitus inten-
sity was the lowest level of sound stimulation reported
as indistinguishable from the tinnitus perception. This
measurement was conducted using the stimulation appli-
cation, which can be adjusted within safe ranges, by the
patients themselves (the device described in Drexler
et al, 2016, was used).

This research has been approved by the Ethical
Committee of the School of Medicine of CLAEH
University, according to the International Ethic Guidelines
for Human Research. Patients were informed and signed a
letter of consent.

3. RESULTS

All patients stimulated at stage N2 showed statistically
significant decrease in tinnitus intensity the day after
stimulation (Figure 1, Table 1).

The three patients stimulated in both ears presented
significant decrease in the intensity of tinnitus the day
after the stimulation. The patient with unilateral tinni-
tus reported a decrease in tinnitus after stimulation that
reached statistical significance only when five intensity
measurements performed in the morning before and after
the stimulation were compared.
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Figure 3: Patients stimulated with sound mimicking tinnitus in REM sleep stage. Same description as in Figure 1.
A, Stage characterized by rapid eye movements, muscle atonia and twitches, and electroencephalographic desynchronization.
B, two subjects were stimulated in the right ear (FA and FH) and one in both ears (MR). One out of three showed
significant changes after stimulation. Student ¢ test, *** p < 0.001.
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No patient stimulated in stage N3 reported changes in
the intensity of tinnitus (Figure 2, Table 1).

Only one patient out of three stimulated during REM
sleep reported changes (Figure 3, Table 1).

4. DISCUSSION AND CONCLUSIONS

Although treatments for tinnitus have been varied, in
recent decades sound stimulation has become a method
for improving it. Since understanding that tinnitus
arises from a disturbance in central auditory process-
ing (Jastreboff, 1995), a treatment based on manipulat-
ing neural plasticity through sound stimulation appears
reasonable. The protocols developed towards this strat-
egy have also varied, from Tinnitus Retraining Therapy
(TRT), a behavioral treatment that tries to psychologi-
cally disconnect the patient from the dependence on tin-
nitus (Kroener-Herwig, 2000), music therapy (Kusatz,
Ostermann, & Aldridge, 2005), to sounds with different
degrees of complexity (Heijneman, De Kleine, & Van

Dijk, 2012; Hoare, Searchfield, El Refaie, & Henry,
2014; Noretia & Eggermont, 2005; Pantev, Okamoto, &
Teismann, 2012; Reavis et al., 2012; Schaette, Konig,
Hornig, Gross, & Kempter, 2010; Vermeire, Heyndrickx,
De Ridder, & Van De Heyning, 2007; Wazen et al., 2011;
Wilde, Steed, & Hanley, 2008). In the last decade a pro-
tocol of treatment with sound stimulation during the night
has been developed (Drexler et al., 2016; Pedemonte et
al., 2010). It is not clear yet what is the most effective
form of stimulation or when to apply it (Theodoroff et
al., 2017). The proposal of relearning an auditory percep-
tion mediated by a nocturnal consolidation mechanism
that depends on the sleep phase will also shed light on
whether the auditory system interacts differently with
sensory inputs across stages.

Our results suggest that N2 is the sleep stage when the
interaction between auditory processing and sleep gener-
ating networks leads to the strongest reduction in tinnitus
intensity by external sound stimulation. These results are
consistent with the previous results that showed more
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Table 1: Averages of patients’ tinnitus intensities (with standard
deviations) before and after sound stimulation during sleep
stages N2, N3, and REM.

N2 stimulation

dB
Patient left ear right ear
before after before after
B.L 63.6+15 60.1+15* 739+15 720=+12*
MM  46.7+1.8 451+2.1* 455+43 446+22%*

ADe 341+0.8 31.6+x1.6** 341+08 31.6+1.6%**
C.H 57.8+1 478+1.7*

N3 stimulation

dB
Patient left ear right ear
before after before after
J.C 578+14 574+10 674+09 67.6+038
A.Di 423+39 444+1.1 419+£37 42.1+0.7
LF 514+05 52.+0% 514+05 52.0+0.6
W.M 75615 75.1+09
REM stimulation
dB
Patient left ear right ear
before after before after

FA 39.8+49 37.7+0.6
FH 67.6+1.1 682+23
M.R 50.3+3.6 40.1+3.5%* 546+1.7 40.9+3.8%*

*p<0.05
*#%p < 0.01

changes in electroencephalographic wave’s coherence
in N2 sleep stage during sound stimulation (Pedemonte,
Testa, Diaz, & Suarez-Bagnasco, 2014). Morever, sleep
spindles, characteristic of N2 sleep stage, are those
that change their intra and interhemispheric coherence.
Pedemonte et al. (2014) show that the theta frequency
range is the one that most increases its power spectrum
with sound stimulation with the greatest increases in
the N3 stage, while our results show no change in the
intensity of tinnitus in this stage of sleep. According to
studies in animal models, the theta rhythm can appear
phase-locked with the auditory neuronal discharges in
all stages of the wake-sleep cycle (Pedemonte, Peia,
& Velluti, 1996b, 2001). This temporal correlation has
also been seen in visual neurons (Gambini, Velluti, &
Pedemonte, 2002). Theta rhythm is postulated as a tem-
porary organizer, a “time giver”, to sequentially organize
sensory inputs. The notion that theta rhythm changes are
dependent on the animal’s attention state during behavior

was postulated several decades ago (Kemp & Kaada,
1975; Vinogradova, 2001; Wallenstein, Eichenbaum, &
Hasselmo, 1998). Apparently this temporal correlation
can be caused by changes in the sensory input; therefore
theta rhythm would officiate more as a novelty sensor
than in the processing of specific sensory information
(Liberman, Velutti, & Pedemonte, 2009; Pedemonte,
Gambini, & Velutti, 2005).

Knowing what a sensory input does in the brain
when stimulated is still a great challenge. We assume
it interacts with information stored in memory, which
is expressed through the efferent control systems,
with genetic information, which is processed with an
emotional-affective load and is processed differently
depending on the state of the brain the recipient, such
as sleep or waking with different nuances. This research
contributes data about the best stage for correcting
anomalous auditory perception through sound sensory
stimulation during sleep.
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