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ABSTRACT: Computational phonology is not one thing. Rather, it is an umbrella term which may refer to work on
formal language theory, computer-implemented models of cognitive processes, and corpus methods derived from the
literature on natural language processing (NLP). This article gives an overview of these distinct areas, identifying
commonalities and differences in the goals of each area, as well as highlighting recent results of interest. The overview
is necessarily brief and subjective. Broadly speaking, it is argued that learning is a pervasive theme in these areas, but
the core questions and concerns vary too much to define a coherent field. Computational phonologists are more united
by a shared body of formal knowledge than they are by a shared sense of what the important questions are.
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RESUMEN: ¿Qué es la fonología computacional?.- La fonología computacional no representa un campo unitario,
sino que es un término genérico que puede hacer referencia a obras sobre teorías de lenguajes formales; a modelos de
procesos cognitivos implementados por ordenador; y a métodos de trabajo con corpus, derivados de la bibliografía
sobre procesamiento del lenguaje natural (PLN). Este artículo ofrece una visión de conjunto de estas distintas áreas,
identifica los puntos comunes y las diferencias en los objetivos de cada una, y pone de relieve algunos de los últimos
resultados más relevantes. Esta visión de conjunto es necesariamente breve y subjetiva. En términos generales, se ar-
gumenta que el aprendizaje es un tema recurrente en estos ámbitos, pero las preguntas y los problemas centrales varían
demasiado como para definir un área de estudio unitaria y coherente. Los fonólogos computacionales están unidos
por un cúmulo común de conocimientos formales más que por un parecer compartido acerca de cuáles son las preguntas
importantes.

PALABRAS CLAVE: fonología computacional

1. INTRODUCTION

What does it mean to be a scientific field of inquiry?
Proceeding inductively, we might observe that well-es-
tablished fields tend to exhibit the following properties:

a core set of observable phenomena, which the
field seeks to explain
a core set of research questions the field asks
about those phenomena
a shared set of background knowledge that is in
part specific to the field
a shared 'toolbox' of research methods used for
gaining new knowledge

These properties exhibit a granularity of scale;
within one field there may be sub-fields which ask more
specific questions, assume greater amounts of shared
knowledge than the field as a whole, and utilize a restrict-
ed set of methodologies. For example, linguistics is a
rather wide field of inquiry; within this field there is a
sub-field devoted to the study of syntax specifically.
Because science is a dynamic and evolving enterprise,
scientific fields exhibit the same kind of taxonomic
structure as other evolutionary systems, such as species
and languages –subfields may have sub-subfields of
their own, and particular sub-fields may have more in
common with a different field than the 'parent' field. For
example, psycholinguistics can be considered a sub-field
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of linguistics, but the research methods and the special-
ized knowledge specific to that field are arguably closer
to the field of psychology. But, then, which of properties
(i)-(iv) are essential to a field? The answer to this ques-
tion will inform our answer to the question, “What is
computational phonology?”

Some perspective on this question can be gained by
considering the historical development of a field. Fields
can occasionally form, or shift dramatically in character,
with the emergence of a charismatic and persuasive
thinker or a seminal publication. This was arguably the
case in linguistics with Chomsky's review of B. F.
Skinner's Verbal Behavior (1959) and other related
publications (Chomsky, 1956). Fields may also stratify
to the extent that it is worth considering them as two
different fields. For instance, most of the scientific fields
we know today have their roots in philosophy. Fields
may coalesce by the identification of similar strands of
thought in fields that were formerly separate; such is
arguably the case with the field of cognitive science, or
more specifically with psycholinguistics. In the case of
newer, less-established fields, especially those which
coalesced from multiple other fields, there is a much
smaller core of shared, field-specific knowledge. Ar-
guably, the codification of a shared body of field-specific
knowledge is the consequence of establishing academic
programs/departments for a given field, rather than a
cause or necessary property of fieldhood. As for the re-
search methods of a field, they are ever-changing.
Methodology might be used to characterize a field at a
particular historical moment, but most fields persist
through several methodological turnovers. For example,
the increase in computer resources over the last 50 years
has revolutionized linguistic methodology, but the
questions we ask now are arguably the same ones that
Chomsky laid out in the 1950s: How do children learn
language? Out of the space of logically imaginable lin-
guistic patterns, why do many systematically not occur?
To what extent can the occurrence/non-occurrence of
linguistic patterns be explained by functional aspects of
communication, and to what extent is it determined by
properties of the cognitive systems(s) that process and
represent language?

There is room for legitimate disagreement on this
point, but for many researchers, a field revolves around
a set of empirical phenomena, and a key set of research
questions the field seeks to answer about those phenom-
ena. By this standard, I will suggest that computational
phonology is not really a single field. Rather, the phrase
'computational phonology' is used as an umbrella term
for research which generally presupposes a shared,
specific set of background knowledge and uses a com-
mon set of research methodologies, but often with radi-
cally diverging questions. I will make this case by sur-
veying recent progress in four different subfields, all of
which I or colleagues have identified as 'computational
phonology'. We shall see there is a general emphasis on
learning, and that all or most practitioners have a com-
mon background in corpus and finite-state methods, but

the sub-fields themselves differ quite radically in what
the research questions are.

Prior to the survey, it is necessary to voice a caveat.
The view of the field that I present is my own. I make
no claim that the survey below is comprehensive, or
unbiased; in fact, I avow that this review is strongly bi-
ased toward my own research interests, the readings I
have done, and by informal conversations I have had
with colleagues. I have surely omittedmention of a great
deal of important and interesting work, either from
time/space constraints or because I have not yet had the
honor of being exposed to it. Still, as a multidisplinary
researcher I hope that all readers will find something
newwithin these pages, and I have aimed for the fairest,
most scrupulous and scholarly tone for the works I was
able to review here. Prior to the body of the paper I
briefly review background material.

2. BACKGROUND

2.1. What is phonology?

I assume that the reader of this article has some
background in formal linguistics, perhaps equivalent
to a one-year undergraduate sequence covering pho-
netics, phonology, and other core areas. For example,
I assume the reader is familiar with the concept of
underlying representation (UR; also called lexical
representation,or input)versus surface (SR;alsocalled
output), and the convention that URs are indicated
with slashes // while SRs are indicated with brackets
[]; I assume knowledge of the terms 'segment', 'sylla-
ble', 'onset', 'coda', et cetera, and the International
Phonetic Alphabet. Still, as I anticipate some readers
will come from a computational background where
the study of speech sounds is not emphasized, I will
briefly describe here core concepts which figure
prominently in the paper.

2.1.1. Markedness

Cross-linguistically some structural configura-
tions appear to be dispreferred. For example, French
has a complex process known as schwa deletion, in
which the weak schwa vowel tends to delete, except
if the deletion would create a triconsonantal cluster
(Riggle & Wilson, 2005). Moreover, triconsonantal
clusters do not appear in many languages, and tend
to have a restricted distribution in languages that al-
low them at all. It appears as if French and many
other phonologies are specifically avoiding this
'marked' configuration. The proper treatment of
markedness is a core concern in phonological theory.
What structural configurations are marked? How is
markedness represented in the minds of speakers?
How is markedness acquired –is it learned from pho-
netics, projected from the lexicon, or something else?
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2.1.2. Alternations

Alternation is the name given to cases in which the
same phonological entity appears with two or more
forms. For example, compare my casual pronunciations
of the English words pentagon and pentagonal:

In (1), segment-to-segment identity is indicated by
vertical alignment. Non-identical correspondents are ver-
tically aligned, but indicated with a vertical bar or slash.
Everycorrespondingvowel is different between these two
forms,owing to thedifferentpositionof stress. Inaddition,
the medial coronal stop /t/ is aspirated in pentagonal be-
cause it precedes the stressed vowel, while it lenites to a
flap in pentagon because it precedes an unstressed vowel
(and additionally coalesces with the nasal to yield a
nasalized flap). The proper treatment of alternations,
wherein the 'same' phonological unit varies according to
its context, is also a core concern of phonological theory.

2.1.3. Opacity

Opacity arises when the surface evidence for a
phonological process is inconsistent. For example,
Baković (2007) gives the following, well-known exam-
ple from Yokuts Yawelmani:

Evidently, the Long High Vowel Lowering process
servestoavoidlonghighvowels,amarkedoutcomewhich
never appears on the surface in this language (even though
many URs contain underlying long high vowels). The
ClosedSyllableShorteningprocess is similarlymotivated
by the observation that long vowels never co-occur with
coda consonants. The 'problem' in (2) is that there is no
reason for both processes to apply. Closed Syllable
Shortening alonewould avoidbothmarked structures, but
Long High Vowel Lowering appears to apply anyways,
gratuitously 'hiding' the underlying height of the vowel.
Opacity, or at least certain types of opaque patterns, are
believed to present a significant learning problem.

2.1.4. The Sound Pattern of English (SPE/Rules)

Chomsky and Halle (1968) proposed a phonological
analysis of English using string rewrite rules of the form
AXB→AYB, typically abbreviated X→Y / A__B and

read out loud as 'X goes to Y when it occurs after A and
before B'. The formal mechanisms they introduced –in-
cluding the treatment of segments as 'feature bundles', to
which rules could refer, and language-specific rule order-
ings– became the dominant paradigm within the field of
phonology formanyyears afterwards. Even as constraint-
based formalisms have replaced SPE-style rules as the
preferredvehicleforphonologicalanalysis,manylinguists
still use rules as a convenient shorthand for describing
phonological processes, e.g. in (2) above.

2.1.5. Optimality Theory

Optimality Theory, like SPE, defines the phonologi-
cal grammar as a cognitive mechanism which imple-
ments the mapping from an input/UR to an output/SR,
and may make reference to 'hidden' phonological struc-
ture such as metrical feet, syllables, etc. Unlike SPE,
OT posits that there are multiple possible candidates for
a given input, and there is a parallel computation to
identify the optimal ('most harmonic') output candidate,
rather than the serial/derivational process or ordered
rule in SPE. Seminal works on OT (McCarthy& Prince,
1994; Prince & Smolensky, 1993, 2002, 2004;
Smolensky & Legendre, 2006) define the core compo-
nents of a broad class of constraint-based theories: there
must be a component which proposes output candidates
(GEN), a set of constraints (CON), and an evaluation/se-
lection mechanism (EVAL) which chooses the winning
candidate based on some language-specific prioritization
of the constraints. Some authors use “OT” to refer to
refer broadly to any such constraint-based theory of
phonology. I will use “OT” to refer to the subclass of
constraint-based theories with the “total ordering”
evaluation method described in Prince and Smolensky
(1993, 2002, 2004) and McCarthy and Prince (1994).
That is, for the purposes of this article, “OT”means that
constraint conflicts are resolved in favor of the highest-
ranked constraint, regardless of whether the winning
candidate incurs more violations of lower-ranked con-
straints than alternate candidates. (Constraint conflict
arises for particular inputs when it impossible for an
output to satisfy one constraint without violating another.
An example is shown below in (3).

2.1.6. Harmonic Grammar

Later in the article, article, I will make frequent ref-
erence to MaxEntHG (Goldwater & Johnson, 2003;
Hayes & Wilson, 2008), a probabilistic extension of
Harmonic Grammar (Legendre, Miyata, & Smolensky,
1990; Smolensky & Legendre, 2006) in the log-linear
framework. As the reader may not be familiar with
Harmonic Grammar, I describe it very briefly here.
Harmonic Grammar is a close variant of OT which dif-
fers in the evaluation procedure: constraints are
weighted, rather than totally ordered, and the harmony
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of a form is determined by the weighted sum of its
constraint violation. As with OT, this is straightforward-
ly illustrated with a tableau; an example of word-final
devoicing is shown in (3):

The UR /gad/ is given in the top left cell, while can-
didate SRs are listed below. Constraint names are given
in the top row after the input; IDENTVCE[-SON] penalizes
obstruents for which the output voicing value does not
match the underlying voicing specification, while
*[-SON,+VCD]]PRWD penalizes voiced obstruents at the
end of a word. Constraint violations are marked in the
cells with an '*'. For inputs with underlyingly voiced
final obstruents, it is impossible to satisfy both con-
straints at once; thus this is an example of constraint
conflict. The constraint weights are listed directly under-
neath the constraints themselves, and are required to be
nonpositive.1 The final column indicates the harmony
value of the output candidate, defined as the weighted
sum of the constraint violations. As with OT, the most
harmonic output candidate (or, equivalently, the least
disharmonic) is selected as the winner; this is conven-
tionally indicated with the “OT hand”☞. In cases where
only two constraint violations trade off against one an-
other, Harmonic Grammar is equivalent to OT; however,
the two theoriesmake different predictions when a single
constraint violation conflicts with multiple violations
of a different constraint (counting cumulativity) or vio-
lations of multiple constraints (ganging cumulativity).

2.2. Probability

I assume the reader is familiar with elementary
statistics and probability theory. For example, I assume
the reader is familiar with the concept of p-value, t-test,
and use of the binomial formula to calculate the proba-
bility of a series of coin tosses. I also assume the reader
is familiar with exponentiation and the inverse operation
of taking the logarithm. Below I describe the concept
of odds, and briefly outline log-linear models.

2.2.1. Odds and log-odds

The odds of two events, sometimes written a:b,
indicate the relative probability of the two events. For

example, if the odds are 3:2 that Lucky Horse will
win the race, it means that Lucky Horse is expected
to win 3 times for every 2 times that Lucky Horse
does not win. Odds can always be converted to prob-
abilities and vice versa; for example 3:2 means that
Lucky Horse will win 3 times out of 5 trials for a
probability of 3/(3+2) = 0.6. Odds can be represented
as single numbers by simple division, e.g. 3:2 = 3/2
= 1.5. Thus, when there are only two possibilities, an
odds of 1.5 corresponds to a probability of 0.6. The
log-odds of two events A and B is simply the loga-
rithm of their odds, i.e. log(a:b). (In general, I will
assume the natural logarithm unless otherwise speci-
fied.) The log-odds has several intuitively attractive
properties. It is zero when A and B are equiprobable,
positive when A is more probable than B, and nega-
tive when A is less probable than B. Moreover, the
greater the asymmetry in probability between A and
B, the greater the magnitude of the log-odds. Finally,
in many of the systems where log-odds are used,
probability differences can be many orders of magni-
tude. The log operation makes the relative likelihood
of these outcomes easier to grasp for normal readers.

2.2.2. Log-linear models

Log-linear models express the probability of input-
outcome pairs in terms of some feature functions and
associated weights. The scoreHM(w) of an input-outcome
pair is the weighted sum of its feature values. The output
of the modelM(w) is then determined by stipulating that
the probability of an input-outcome pair is proportional
to the exponential of its score. Formally, a log-linear
model M(w) consists of a vector of feature functions f
= {fk} and a relation GENwhich gives the set of possible
outcomes yij for each input xi. In addition, the vector w
is a parameter ofM, and represents the weights that are
associated with the feature functions:

(4) PrM(w)(yij | xi) = exp(HM(w)(xi, yij))/Z(xi)

HM(w)(xi, yij) = Σkwk·fk(xi, yij)

Z(xi) = Σy[i,j']∈GEN(x[i]) exp(HM(w)(xi, yij'))

Log-linear models have several attractive computa-
tional properties. One of them is that it is easy to inter-
pret the relative probability of two different outputs: for
a given input xi, the log-odds of outcome yia versus yib
is simply the difference in their scores HM(w)(xi,
yia)–HM(w)(xi, yib). Another, especially important property
is that for fixed f and GEN, only mild assumptions are

1Some authors instead require that weights be nonnegative. The formalism itself requires that the weights all be the same sign. (Otherwise,
the theory would not exhibit harmonic bounding, and would lose the desirable typological restrictiveness that comes from an explicit theory
of markedness.) I prefer negative weights, since this aligns intuitively with the definition of harmony: candidates with more constraint violations
are less harmonic. As we shall see later, negative weights also aligns with the natural extension of Harmonic Grammar to a log-linear model.
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needed to ensure that the probability of a dataset X =
{(xi, yij)i=1..N} is convex in the space of all possible weight
vectors (Berger, Della Pietra, & Della Pietra, 1996). In
more everyday language, this means two things. First,
there is a unique 'best' weight vector (wmax) which max-
imizes the likelihood of the observed data. Second, it is
possible to find this unique best solution in a computa-
tionally efficient manner, using well-established numer-
ical techniques like (conjugate) gradient ascent. As we
will see later, log-linear models offer a natural proba-
bilistic extension for Harmonic Grammar, which offers
the exciting potential for a theory of phonological
learning that is machine-implementable and testable on
natural language data.

This completes the survey of background material.
The next section begins the body of the paper. In that
section, I briefly survey the field known as 'formal lan-
guage theory', whence modern linguistics began.

3. FORMAL LANGUAGE THEORY

Formal language theory is an axiomatic, logical/math-
ematical approach to language. A 'language' is defined
as a set of strings, often according to some process that
generates the set. Researchers who work in this area are
concernedwith the classification of languages according
to the 'complexity' of the process required to generate
the language, as well as the assumptions needed to learn
languages in the various classes identified. Two of the
best-known concepts to have emerged from this line of
research are the Chomsky-Schützenberger hierarchy
(Chomsky, 1956) and the concept of identification in
the limit (Gold, 1967), both of which will be briefly
covered later. Two strands of work in this line of special
relevance to phonology include comparisons of the ex-
pressive power of different phonological frameworks
(e.g. Buccola & Sonderegger, 2013; Graf, 2010ab; Jar-
dine, in press) and the elaboration of finite-state tech-
niques which 'count' constraint violations for entire
classes of strings, enabling efficient machine optimiza-
tion (e.g. Eisner, 2002; Hayes & Wilson, 2008; Riggle,
2009).

As this material is somewhat technical and unlikely
to be known to the average linguist, I begin with an
overview of basic concepts. Furthermore, because the
article aims to cover other topics besides just formal
language theory, the overview is necessarily somewhat
superficial; it is meant to describe the intuitions, the
most common notation, and the most widely cited re-
sults. Readers who are already acquainted with this
material may wish to skip directly to the Framework
comparison subsection. Conversely, readers who wish
to learn more are advised to peruse a source devoted to
formal language theory: Heinz (2011ab) for phonology
specifically, Stabler (2009) for a survey of formal lan-
guage theory as it relates to natural language universals,
or an introductory computer science textbook for the
basics.

3.1. General overview

In formal language theory, 'language' does not refer
to a shared linguistic code like English or Amharic or
Tashliyt Berber. Rather, it is a formal object with pre-
cisely specified properties, which can be studied in a
mathematical, axiomatic, logical fashion. Conventional-
ly, formal language theory assumes an alphabet Σ and
defines a string as an ordered sequence of elements from
Σ. For example, if Σ = {a, b} then σ = ab is a (rather
short) string over Σ. The set of all possible strings over
Σ is denoted Σ* (where * is called the Kleene star and
has the conventionalized meaning of “0 or more repeti-
tions”). Normally in formal language theory, a language
L is defined as a subset of Σ*. Note that the elements of
the alphabet do not have any intrinsic meaning, or any
internal structure; they are simply algebraic elements
that are distinct from one another.

For example, we could define Σ = {C, V} and L =
(CV)+ (where + means “1 or more repetitions”); the re-
sulting set of strings would look to a phonologist like a
strict CV language: {CV, CVCV, CVCVCV, ...}. But
the formalism does not know that C means consonant
and V means vowel in the same way that human speak-
ers do. Humans know that vowels are characterized
partially complementary articulatory and acoustic
properties, as well as sequencing facts (e.g. words must
begin with a C, every C must be followed by a V, V can
end a word or be followed by a C). The formalism
merely knows the sequencing facts, and that C is a dif-
ferent symbol than V. Indeed, the language L = (ab)+
over Σ = {a, b} has the same abstract structure as L =
(CV)+ over Σ = {C, V}; from a formal language perspec-
tive, these are notational variants, meaning that they
express the same pattern after a transparent, structure-
preserving change in notation.

Interest in formal language theory is motivated by the
assumption that natural languages can be mapped onto
some particular class of formal languages (or vice versa),
and that the properties of the formal language class will
yieldclearinsightsintohowlanguageislearned,represent-
ed and computed in the minds of speakers. For example,
it iswidelybelievedthatsyntaxismildlycontext-sensitive,
while phonology is (sub)regular (e.g. Heinz, 2011ab;
Stabler, 2009). We will unpack this assertion later. In the
meantime,itmustbeacknowledgedthisideaofidentifying
languages with stringsets, and dividing them up into
classes based upon certain properties, is a large assump-
tion, whose full implications we do not have space to as-
sess here. I will point out one implication here however:
the literature on learning formal languages ('learnability')
assumes that knowledge that is 'outside' the grammar is
not brought to bear on grammar learning. For example,
phoneticknowledgedoesnotfigure in theformal language
learnability literatureonphonology, just as semantic/prag-
matic knowledge does not figure in the learnability litera-
ture on syntax. With this kind of caveat in mind, let us
consider what formal language theorists mean by a lan-
guage class.
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3.2. The Chomsky Hierarchy

It may be helpful to begin with an example. Chomsky
(1956) describes a way of generating strings that is now
known as a phrase-structure grammar. Phrase-structure
grammars are predicated on a system of “rewrite rules”,
in which one string is rewritten as another. Here is an ex-
ample of an especially simple phrase-structure grammar:

The S symbol is underlined to indicate that it is the
unique start symbol. This grammar generates strings by
beginning with the start symbol, and generating all
possible outputs by applying any rule that can apply, at
any time. For example, this grammar generates the string
the boy likes the boy by rewriting 'S → NP VP', 'NP →
the boy', 'VP → V NP', and 'NP → the boy' again. The
sequence of rewrite operations, together with the final
output of the derivation, has an elegant visual represen-
tation as a tree:

The grammar in (5) is simple enough to enumerate
the entire language it generates: the boy likes the boy,
the boy likes the dog, the dog likes the boy, the dog likes
the dog.

More formally, a phrase-structure grammarGconsists
of a start symbol S, a set of terminal symbols Σ, a set of
nonterminal symbols V (which must not share any sym-
bols with Σ), and a collection of rewrite rules R, where
each rewrite rulemaps a sequence containing a nontermi-
nal to a sequence of terminals and nonterminals. The lan-
guage generated by such a grammar is defined as the set
of strings generated by all derivations that terminate (i.e.
strings containing only terminal symbols).

3.2.1. Context-sensitive languages

The set of languages that can be generated when the
rewrite rules are only unrestricted to not increase the
number of symbols is called the context-sensitive class.
It is possible to define context-sensitive languages which
are completely unlike natural languages, for example

languages in which if the grammar generates a sentence
X = x1 x2 ... xn, it also generates the mirror-image X' =
xn xn-1 ... x1. Natural languages exhibit certain kinds of
regularities, such as constituency structure, which are
not expected if rewrite rules are completely unrestricted.
Therefore, the class of context-sensitive languages is
'too rich'; it does not explain the structural constraints
that natural languages have.

3.2.2. Context-free languages

Chomsky (1959) defined the context-free class as
the set of languages which can be generated by a gram-
mar in which the left-hand side of every rewrite rules is
a single nonterminal. In other words, the rewrite rules
substitute a unique nonterminal for something else
–crucially, without regard to what surrounds the nonter-
minal. Grammar (5) is an example: every rewrite rule
contains a single nonterminal on the left-hand side. In-
tuitively, this means that the eventual output that corre-
sponds to a nonterminal cannot 'look outside' the nonter-
minal itself. In other words, context-freeness imposes
a type of locality restriction on how substringsmay share
dependencies. This is onemeans of enforcing constituent
structure in context-free languages.

3.2.3. Regular languages

The regular languages are those that can be generat-
ed by rewrite rules in which the left-hand side consists
of a single nonterminal, and the right-hand side may
contain at most one nonterminal. Moreover, the nonter-
minals on the right-hand side of the rewrite rules must
always be final in the rewrite string (in which case the
language is called right regular), or must always be
initial in the rewrite string (in which case the language
is called left regular). Here is an example of a right
regular grammar and a string that it generates:

The symbols in (7) were chosen suggestively, to il-
lustrate to readers how formal languages might encode
structures and relations used in mainstream phonology.

Now we are in a position to understand the contrast-
ing claims that “phonology is (sub)regular” while
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“syntax is mildly context-sensitive”. The former phrase
expresses the belief that for every natural language L,
there is a grammar GL which can generate all and only
the licit phonological strings of L, and GL can be written
as a regular grammar (possibly even as some proper
subset of the regular languages). The latter phrase ex-
presses the belief that this is not true for syntax, since
there exist syntactic patterns which (it has been claimed)
cannot be captured by regular rewrite rules, or even
context-free rewrite rules. For example, Shieber (1985)
gives the following Swiss German clause as an example
of a cross-serial dependency:

Languages which admit of an arbitrary number of
such dependencies are probably non-context free, and
Shieber argues that Swiss German is just such a case.

3.3. Equivalency of Finite State Automata and
Regular Languages

An overview of formal language theory would not
be complete without mention of finite state machines
(FSMs, also called FSAs for finite state automata).
Practically speaking, an FSM is an alternative represen-
tation of a regular language. Historically, the two were
conceived of separately, but the formal equivalence was
noted and proved in early work. An FSM consists of a
set of states, conventionally indicated with circles and
an optional state label. In addition to the states, an FSM
contains transitions between states, which must be la-
beled in most formulations. At least one state is desig-
nated as a start state, and at least one state is designated
as an end state; thesemay be the same state. Convention-
ally, the start state is indicated with a thick circle, while
other states are indicated with a single circle. Here are
two examples:

Finite state machines can be considered as generators
or parsers, but either way, they describe the same set of
strings. Example (9) describes exactly two strings:Hello
father, andHello world. Example (10) describes an infi-

nite number of strings, including This is the cat, This is
the cat that chased the rat, This is the cat that chased
the rat that ate the cheese, This is the cat that ate the
cheese that chased the rat, etc. In generation mode, the
FSM works by beginning at the start state. If it is at an
end state, it may stop, having generated a complete
string. If there are one or more transitions out of the
current state, the machine selects one randomly and
follows it, emitting a symbol along the way (the label
on the transition). However, when there is only one
transition out of a non-end-state, the machine must fol-
low that unique transition. In parsing mode, the machine
is said to consume symbols from an input string. It be-
gins at the start state. When it receives the next symbol
from the input string, it looks for a transition with a
matching label. If there is a matching transition, it fol-
lows it and advances to the next input symbol. If there
is not a matching label, the machine is said to reject the
string. If the machine is in an end state when the input
string is entirely consumed, the machine is said to accept
the string; otherwise the machine rejects the string. In
other words, the FSM accepts the string if and only if
it can match every symbol in the input string with a
transition and end up in an end state when the input is
consumed.

An example of a string that (10) does not accept is
This was the cat that chased the rat. Initially, the ma-
chine is in the start state (S1). The first input symbol,
This, is presented andmatches the label for the transition
leading out of S1 and into S2, so This is consumed and
the machine enters state S2. Now the input symbol was
is considered, but the only available transition label is
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is, so the machine rejects the string. In formal language
theory, accepting or rejecting a string is akin to offering
a grammaticality judgment. Languages are defined as
sets of strings, so in principle it is possible to make a
binary judgment for every string, whether it is in the
language. In the case of regular languages, there is
guaranteed to be a finite state machine which can not
only do this is principle, but can do so straightforwardly
and efficiently in a computer implementation. For this
reason, finite state methods have been applied through-
out computer science, for both natural language process-
ing and various other applications (such as programming
language parsing and compilers).

It is worth noting here that there are alternative for-
mulations of finite state machines. For example, it is
possible to make the state labels correspond to symbols
being generated/consumed, while the transitions are
unlabelled. It is also possible to augment the transition
and/or states with extra information, beyond the symbol
being consumed/generated. Indeed, there is a great deal
of work on this topic, which is omitted for space reasons.

A final type of finite state automata is known as a
finite state transducer (FSTs). An FST is just like an
FSM, except that it parses an input string and generates
a corresponding output string. That is, the FST behaves
just like a FSM in terms of parsing, but its transition la-
bels have been augmented; the label consists of both the
input symbol to match, and an output symbol to generate
upon a successful match. Here is an example which
implements an intervocalic lenition rule (d→ ð / a__a):

The symbol ∈ is a special symbol, conventionally
used to indicate an empty output. The finite state trans-
ducer in (11) will first match an /a/ and output an [a];
then it will match a /d/ but output nothing, waiting to
see if it gets another /a/. If it gets another /a/, it will then
output the 'delayed' [ð] along with the [a]; otherwise,
the FST will reject the string, indicating that the lenition
rule does not apply to this input.

3.4. Identification in the limit, and other notions of
learnability

Gold (1967) provided the first formalization of
learnability for a formal language. In Gold's conception,
the input to a learner is defined as a text T –an infinite
sequence (t1, t2, ...) of grammatical items from a lan-
guage L, which is guaranteed to contain every item in
L at least once, but not in any particular order. A gram-
mar G(L) is defined as a finite representation that can
generate all and only the strings of L. A learner A is
defined as a function which accepts a finite subsequence

Tn = (t1, t2, ..., tn) from a text T and returns a hypothesized
grammar. For example, A(T5) is the grammar that
learner A would posit after hearing the first 5 sentences
of L in text T. By feeding a learner A successively longer
subsequences from an input text T, we obtain a sequence
of posited grammars A(T1), A(T2), ... A learner is said to
identify L in the limit if for every text T, there is a finite
amount of input N such that A(TN) = G(L), and A(Tm) =
A(TN) for allm> N. In other words, the learner A is said
to identify L in the limit if they are guaranteed to con-
verge on a grammar that generates L in a finite amount
of time.

Prior to presenting Gold's main result, it is worth con-
sidering how this framework compares with the child's
learning situation. In the framework described above, a
learner has access only to positive evidence, that is, only
to sentences which are actually in the language. This is
nowreferred toasunsupervised learning, since the learner
does not have access to an external metric or 'objective
function'which unambiguously indicates the nature of the
solution to be learned. (Gold also considered supervised
learning, in the form of an informant who presents both
sentences from the language and sentences not from the
language,while indicatingwhich iswhich.) It is generally
believed that children acquire the syntax of their language
from positive evidence only, and tend to ignore the nega-
tive evidence they do get (R. Brown, 1973). On the other
hand, Gold's framework does not allow for 'meaning', ei-
ther the semantic meaning of the words that sentences
hear, or the 'phonetic'meaning of the phonemes thatmake
up those words.Moreover, Gold's notion of identification
in the limit does not impose any constraints upon the input
text, such as some kind of 'representativeness' criterion.
That is, it is a safe bet that the words 'momma' or 'mother'
appear in the firstmillionwords thateveryEnglish-acquir-
ing infant hears, but there is nothing inGold's formulation
which requires input texts toexhibit thiskindof real-world
distributional property. Thus, Gold's assumptions line up
with the child's learning situation in one way, but differ
from it in other ways.

There were two key results in Gold (1967). The first
is that the class of regular languages is not identifiable in
the limit.The secondwas that regular languages (andeven
higher classes in the Chomsky hierarchy) are learnable in
the limit from an informant, i.e. supervised learning with
positive and negative examples. Since phonology is be-
lieved to be (sub)regular, and syntax is believed to be at
least context-free, and it is widely believed that children
doeventuallylearnthecorrectgrammarfor their language,
this result is interpreted by many theorists as proving that
childrenpossessinnateconstraintsonthespaceofhypothe-
ses that they consider as grammars for their language.

This conclusion does not actually follow from Gold's
theorem. Ingeneral, one canonly reason 'backwards' from
a model to reality when one is confident that the model is
an accurate portrayal of the reality it is modeling. That is,
modeling results depend on a host of assumptions; they
are akin to a logical proposition of the form, 'If A and B
and C and D, then X'. We cannot conclude from the truth
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of X that A and B and C and D are true. Moreover, we
cannot conclude from the falsity of X that a particular as-
sumption (e.g. C) is false;we can only conclude that some
assumption is false. So fromGold's theorem,whatwe can
conclude is quite limited. It couldbe that children are born
with innateconstraintson thegrammars that theyconsider.
But it also could be that the input is far more constrained
than Gold assumes. It could be that children leverage
multiple types of information (such as semantics and
phonetics) in language acquisition, and that this provides
extra constraints on the space of possible grammars. It
couldbe that humangrammars are not strictly comparable
with the classes of string-generators that Gold considers.
It is possible that humansdonot actually converge a single
finalgrammarstate,andactuallydoupdatetheirgrammars
on the basis of new input throughout the lifespan. These
possibilities are all compatible with Gold's theorem.

Close inspection of the proof for Gold's theorem re-
veals that it depends crucially on the order inwhich exam-
ples are presented. Gold shows that it is possible to con-
struct a textwhich continually forces the learner to update
their hypothesis, because the class of regular languages is
rich enough that one can 'maliciously' deny crucial evi-
dence to the learner ad infinitum. Valiant (1984) intro-
duced a probabilistic framework for studying (machine)
learningknownasprobablyapproximatelycorrect (PAC).
Abstracting away from the technical details, the key dif-
ference is that texts are required to be 'representative', in
the sense that training examples must be drawn from a
probability distribution, and the learner is counted as 'ap-
proximately correct' if its generalization errors on this
distribution fall below an arbitrary threshold δ (which can
be made as small as desired, as long as it is still greater
than 0). A language class is said to be PAC-learnable if a
learner can identify an 'approximately correct' language
in the hypothesis space from a finite sample of the target
language. It is efficiently PAC-learnable if there is an al-
gorithm which is guaranteed to do this while requiring a
number of examples that is polynomial in the size of the
language. Kearns and Valiant (1994) show that regular
languages are not efficiently PAC-learnable, while Li and
Vitányi (1991) show that regular languagesare efficiently
PAC-learnable under the additional assumption that 'sim-
ple' examples are more likely to be drawn than complex
ones (as assessed by a measure called Kolmogorov com-
plexity).

Researchers have interpreted these learnability results
in many ways. Some researchers believe that the way
forward is to develop increasingly fine-grained specifi-
cation of the assumptions and increasingly fine-grained
classifications of the classes of languages. Some re-
searchers believe that this kind of work simply has no
bearing on the learning problem that children actually
face. One generalization that many parties can agree to
is that the learnability results offered so far are fragile,
in the sense that seemingly small changes in the assump-
tions can result in large changes in the nature of the
conclusion (while intuitively similar changes may also
yield no meaningful difference). Thus, one way to view

the careful work done by Gold, Valiant and others is as
an ongoing attempt to characterize which assumptions
actually matter for learnability.

There is a vast amount of work on formal language
theory and learnability that cannot be surveyed here; I
trust the presentation above was detailed enough to give
the lay reader a senseofwhat formal language theory aims
to accomplish. In the remainder of this section, I turn to
two new lines of work in formal language theory with the
potential to informbasic questions in phonology. The first
concerns what might be called framework comparison –a
methodology for comparing two distinct linguistic for-
malisms via the formal languages they generate. The sec-
ondconcerns theuseof finite-state techniques for efficient
implementations of constraint-based phonology, which I
will refer to as finite-state OT.

3.5. Framework comparison

Modern linguistics has taken seriously the task of
formalizing theoretical intuitions. From seminal works
to the modern day, theorists are apt to propose new
frameworks like SPE (Chomsky&Halle, 1968) andOT
(Prince & Smolensky, 1993, 2002, 2004), or non-trivial
departures from existing frameworks, such as autoseg-
mental phonology (Goldsmith, 1976, 1990; McCarthy,
1981), Harmonic Serialism (McCarthy, 2008, 2011),
and others. The formalist bent has paid off in theoretical
precision: so long as the linguistic atoms and operations
are specified, the reader of a paper can make new pre-
dictions from a theory which the original writer would
agree with. This kind of precision enables rapid progress,
and surely reduces the frequency and severity of fruitless
debates in the field over misinterpretations of a theory.
Still, as pointed out in Stabler (2009), the proliferation
of theories does come with a cost. In many cases there
are competing formalisms, but since the surface charac-
ter of the explanation is so different, it is difficult to tell
whether the theories actually make different predictions.

Formal language theory offers a way to directly
compare the expressive and restrictive powers of two
different frameworks. This kind of work is already well-
established in the syntactic domain, as evident from the
following quotation in a review by Stabler (2009):

In the work of Joshi, Vijay-Shanker, and Weir (1991),
Seki et al. (1991), and Vijay-Shanker and Weir (1994)
four independently proposed grammar formalisms are
shown to define exactly the same languages: a kind of
head-based phrase structure grammars (HGs), combinatory
categorial grammars (CCGs), tree adjoining grammar
(TAGs), and linear indexed grammars (LIGs). Further-
more, this class of languages is included in an infinite hi-
erarchy of languages that are defined by multiple context
free grammars (MCFG), multiple component tree adjoin-
ing grammars (MCTAGs), linear context free rewrite
systems (LCFRSs), and other systems. Later, it was shown
a certain kind of “minimalist grammar” (MG), a formula-
tion of the core mechanisms of Chomskian syntax –using
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the operations merge, move, and a certain strict 'shortest
move condition'– define exactly the same class of lan-
guages (Michaelis, 2001; Harkema, 2001; Michaelis,
1998). These classes of languages are positioned between
the languages defined by context free grammars (CFGs)
and the languages defined by context sensitive grammars
(CSGs) like this.

The works cited by Stabler indicate that despite the
surface differences between formal frameworks, they
are sometimes “notational variants”, in the deep sense
that they describe the same set of languages. The details
of these proofs are beyond the scope of this article, but
the general nature of the argument is clear: provide a
schema for translating one formalism into a particular
kind of logic, which can be expressed as a formal lan-
guage. Then do the same for the other formalism, and
show that the two resulting formal languages are the
same (or different) according to known properties of the
formal language. In the view of the researchers who do
this work, formal language theory has a certain potential
to tell us what our formal mechanisms are actually
buying for us.

Kaplan and Kay (1994) arguably supplied the first
such example of this line of work in phonology. They
proved that the rule-based rewrite system presented in
SPE belongs to the class of regular languages, by embed-
ding it in a class of logics known asMonadic Second Or-
der (MSO) logics, known to be equivalent to the regular
languages. More precisely, Kaplan and Kay claimed that
SPEwas regular evenwith 'cyclical rules' that are allowed
to feed its own environment, as long as they are forbidden
from feeding their own targets (for discussion and clarifi-
cation see Kaplan & Kay, 1994). Potts & Pullum (2002)
did essentially the same thingwithOT, embedding a class
of OT constraints into MSO. In addition, Potts & Pullum
demonstrated that particular classes ofOTconstraints that
had been proposed (e.g. align constraints) exceeded the
power of regular languages, and in some cases they pro-
posed regular alternatives.

Graf (2010ab) compared a formalism known as
Government Phonology with SPE. For readers not al-
ready familiar with Government Phonology, Graf
(2010a) very readably points out the vast surface differ-
ences between it and SPE:

GP as defined in Kaye et al. (1985, 1990) and Kaye (2000)
differs from SPE in that it uses privative features (features
without values) rather than binary ones, assembles these
features in operator-head pairs instead of feature matrices,
builds its structures according to an elaborate syllable
template, employs empty categories and allows all features
to spread (just like tone features in autosegmental
phonology). (p. 83)

Graf begins by translating each of these formalisms
into a kind of propositional logic. Like Kaplan and
Kay (1994), Graf embeds SPE in MSO. Graf goes on
toshowthatifGovernmentPhonologyallowsunbound-
ed feature spreading, it can be embedded in MSO; if
it allows only bounded spreading, it can be embedded

in a strictly less expressive logic. In other words, Graf
argues that despite themany differences between these
formalisms, the property that reallymatters is bounded
vs. unbounded spreading, since with unbounded
spreading the two theories can express the same lan-
guages.

Graf goes on to address the 'empirical bite' of this
theory by asking whether any natural phonological
phenomena do require unbounded feature spreading.
Heproposes two candidates –Sanskritnati andCairene
stress assignment. According to Graf, the nati rule
causes an underlying /n/ (the TARGET) to become
retroflexed if it is the first postvocalic /n/ after a con-
tinuant retroflex consonant (/ɻ/ or /ȿ/; the TRIGGER),
provided that nocoronal intervenesbetween the trigger
and target, that the nasal target is immediately fol-
lowed by a nonliquid sonorant, and that there is no
retroflex continuant in the string after the target. As
for Cairene stress assignment, the rule is to stress the
final if it is superheavy or the penult if it is heavy. If
both the final syllable and the penult are light, the rule
is to stress the penult or the antepenult, whichever is
an even number of syllables from the closest preceding
heavy syllable. This suggests the presence of an 'invis-
ible' trochaic footing system, in which secondary
stresses propagate in an iterative/bounded manner
from the rightmost heavy to the penult or the ante-
penult. Of course, as Graf points out, the ability to
analyze bounded/iterative spreading of an 'invisible'
feature is empirically impossible to distinguish from
unbounded spreading of a visible feature. Therefore,
he proposes to ban bounded/iterative spreading of in-
visible features for the purposes of theory comparison.
This suggests that unbounded feature spreading is re-
quired –an important theoretical claim.

Two other recent studies in this line of research are
Jardine (in press) and Buccola and Sonderegger (2013).
Jardine (in press), following directly fromGraf (2010ab),
asks whether autosegmental phonology belongs to the
same class as SPE. Jardine does not give a complete
answer to this question, owing to phenomena such as
floating tones and dissociation rules. However, Jardine
does show that MSO is expressive enough to cover the
'simple' phenomena that initiallymotivated autosegmen-
tal phonology, such as rightward feature-spreading.
Buccola and Sonderegger address Canadian raising, an
opaque phonological pattern in which allophonic varia-
tion is triggered by an underlying contrast that is erased
at the surface:
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a. Raising before voiceless consonants(12)
[ɹa͡ɪd]/ɹa͡ɪd/ride
[ɹʌ͡ɪt]/ɹa͡ɪt/write

b. Foot-medial tapping
[bæɾɚ]/bætɚ/batter
[bæɾɚ]/bædɚ/badder

c. Interaction
[ɹa͡ɪd]/ɹa͡ɪɾɚ/ride
[ɹʌ͡ɪɾɚ]/ɹa͡ɪɾɚ/write
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Patterns like (12) are easily captured by a rules-
based analysis in which the tapping rule applies after
the Canadian raising rule. It is generally believed that
such patterns cannot be accommodated by 'normal'
OT, and a considerable body of work has been devoted
to accommodating the theory to this type of pattern.
What Buccola and Sonderegger show is that for any
version of OT in which there is a single stratum (that
is, one input representation and one selected output
representation, with no intervening representational
levels subject to competition), and in which faithful-
ness constraints assess the relationship only between
an input segment and its output correspondence (i.e.
without reference to its neighbors), the OT theory is
strictly unable to account for the opacity pattern. They
show this by translating OT constraints into finite-
state transducers, in the manner proposed by Riggle
(2004) and described in the next subsection. However,
Buccola and Sonderegger also acknowledge that the
highly related formalism of Harmonic Grammar (in
which constraint competitions are resolved through
linear combinations rather than strict domination) ac-
tually can accommodate cases like Canadian raising,
without allowing for so-called positional faithfulness
constraints. (Finally, there is an analysis in which the
[ʌ ͡ɪ]~[a ͡ɪ] contrast is treated as phonemic, although
many linguists disprefer this, since it requires stipulat-
ing that [ʌ ͡ɪ] is only licensed before coronal obstruents
and [ɾ], and crucially fails to link this fact to the
nearly complementary distribution of [a ͡ɪ].)

In summary, formal language theory has begun to
deliver on the promise of framework comparison in
phonology. If one is willing to accept the premise that
a language is a set of strings, this kind of technically
exacting work has the capacity to reveal surprising
equivalences between formalisms, and to zoom in on
key properties which distinguish expressivity. Still, it
must be acknowledged that existing work seems to
depend sensitively on details of the analysis which are
not themselves rock-solid. For example, the claim that
syntax is not context-free rests on phenomena like
cross-serial dependencies, and more specifically on
the claim that Swiss German allows an unbounded
number of them. In practice, it is likely quite rare for
natural usage to yield more than 1 crossing dependen-
cy.While Graf's (2010a) work does not strictly depend
on whether unbounded feature spreading actually oc-
curs in phonology, it does suggest that this is a critical
distinction phonologists should attend to. However,
as he acknowledges, the two putative cases he gives
have been contentious in the literature. Buccola and
Sonderegger (2013)discussCanadianraisingandmore
generally counterfeeding on environment (Baković,
2011) and seem to endorse a rules-based approach,
but there are alternative analyses that do not require
ad hoc modifications to existing theories.

In conclusion, formal language theory offers a
rigorous, string-based and axiomatic approach to
phonology as a formal system. Many researchers be-

lieve that this kind of logic- or model-based approach
to phonology is the key to discovering what formal
properties of our frameworks make for meaningful
contrasts in empirical coverage and restrictiveness.
Other researchers are uneasy with this approach, a
feelingwhich Stabler (2009) aptly summarized thusly:

But many linguists feel that even the strong claim that
human languages are universally in the classes boxed in
(1) is actually rather weak. They think this because, in
terms of the sorts of things linguists describe in human
languages, these computational claims tell us little about
what human languages are like. (p. 203)

Looking back over the works reviewed above, it is
clear that the formal language approach has relatively
little to say about markedness, alternations, opacity, or
many other core concerns of mainstream theoretical
phonology.

For example, one of the most appealing aspects of
constraint-based grammars is that they formally en-
code a substantive bias against marked structures, by
directly includingmarkedness constraint in the theory.
Indeed, the success of OT in predicting the typology
of syllable structures arises from the combination of
an ONSET constraint (which punishes words that begin
with a vowel) with a formal property called harmonic
bounding (if candidate B is equal or worse on every
dimension than candidate A, B can never win). OT
thereby predicts the existence of languages which re-
quire words to begin with a consonant, and of lan-
guages which allow words to begin with a vowel,
while correctly predicting the absence of languages
which require words to begin with a vowel. But there
is nothing about “regularity” which forces this proper-
ty. Rather, it is part of the substantive content of the
theory. Formal language theory simply has nothing to
say about it.

In any case, it is clear that the formal language
theory approach to framework comparison has just
begun to affect phonology. There will be more of this
work in the near future, not less. The eventual theoret-
ical impact of this line of work cannot be determined
yet, and is likely to depend on the extent to which
theoristsengagewithwell-establishednaturallanguage
data.

3.6. Finite-state OT

Mainstream phonological theory has undergone a
paradigm shift with the innovation of constraint-based
theories such as Optimality Theory (McCarthy& Prince,
1994; Prince & Smolensky, 1993, 2002, 2004). It was
Ellison (1994) who first proposed a finite-state imple-
mentation of OT. The essence of the proposal was to
construct an individual FST for each constraint. For
example, with particular representational assumptions,
the constraint *CODA can be encoded with (13):

Loquens, 1(1), January 2014, e004. eISSN 2386-2637 doi: http://dx.doi.org/10.3989/loquens.2014.004

What is computational phonology? • 11

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


In (13), the input is coded as pairs of syllable slots
and segmental material, with O indicating an onset po-
sition, N the nucleus, C a coda, ε the empty string (a
syllable position that is not filled), and ¬∈ any
nonempty string (a syllable position that is filled). Thus,
for example, when the syllabified form [al.qal.am.u] is
run through the FST in (13), it is represented as in (14a),
and the output is as in (14b):

In other words, the input string is transduced to a
string of constraint violations, whose sum indicates the
number of constraint violations for the candidate as a
negative integer. Moreover, by constructing a regular
expression which generates all possible syllabifications
of /alqalmu/ and performing an operation known as in-
tersection (also called the product), one can obtain the
constraint violations for every possible syllabification.
The advantage of doing this with finite-state methods
is that they are amenable to memory- and operation-ef-
ficient computer implementation; in fact, standard finite-
state libraries have been developed for most major
computer programming languages.

Subsequent work has elaborated on this conception
in various ways, although the core idea of writing con-
straints as FSTs has remained. For example, Karttunen
(1998) proposed to compose constraints according to
their ranking in a particular language with lenient com-
position, which efficiently removes candidates from the
computation as soon as they become suboptimal, while
allowing candidates to violate high-ranked constraints
when there is no better competitor. Frank and Satta
(1998) study the generative power of OT, and conclude
that it is regular only if individual constraints can assign
at most an n-ary distinction in well-formedness for some
finite n. For example, the ALIGN family of constraints,
whichmight penalize an element according to its (poten-
tially unbounded) distance from the edge of a word, is
suspect by these criteria.

Finite-state OT is particularly exciting to me because
of its potential for the study of learning. The key ideas
can be traced to a variety of papers. Goldwater and

Johnson (2003) first noticed that Harmonic Grammars
could be extended to log-linear (maximum entropy)
models, simply by treating constraints as the feature
functions. Berger et al. (1996) proved that under mild
assumptions the likelihood function of log-linear models
is convex in the weight space, which means that there
is a unique maximum and it can be found efficiently
using the gradient (the vector of derivatives with respect
to each weight). Berger et al. further observed that the
gradient can be calculated as O–E, where Oi is the ob-
served violation count for constraint fi in the training
data, and Ei is the expected violation count. Eisner
(2002, et seq.) and Riggle (2004, 2009) extended the
finite-state conception of constraints with a special
product operation that tracks the violation vector for an
entire grammar, alongwith the vector's (log-)probability,
using an algebraic structure referred to as a 'violation
semiring'. The violation semiring construction offers
computationally efficient computation of the weighted
violation vectors for any regular class of strings.
Therefore, it can be used to calculate the expected vio-
lation countEwhen that value is well-defined. Together,
these results imply that a machine-implemented log-
linear grammatical model can feasibly be trained. Hayes
and Wilson (2008) actually implemented such a model
in Java, and have been producing interesting work with
it in subsequent papers. I will return to this model in the
Cognitive Modeling section.

Heinz and colleagues have applied finite-state tech-
niques to the acquisition of phonology. For example,
Heinz (2007) treats the acquisition of long-distance
phonological patterns (such as sibilant harmony, vowel
harmony, and stress assignment) using finite-state
learning. Heinz observes that all such long-distance
phenomena exhibit a property he calls neighborhood
distinctness, a property which enforces certain kinds of
generalization, and which falls out naturally from apply-
ing a 'state merging' operation during construction of
the FSM. Later work by Heinz considers learning vari-
ous classes of subregular languages, often directly moti-
vated by particular phenomena such as vowel harmony,
and sometimes with proofs of identifiablility in the
limit (Heinz, 2010; Heinz & Koirala, 2010; Heinz &
Lai, 2013).

Formal language theory has developed a large body
of axiomatic results on classes of 'languages', defined
as stringsets generated intentionally by some finite,
compact generative mechanisms. Work on this topic is
generally concernedwith 'learnability', which is typically
formulated at an abstract, algebraic level. For example,
a class of languages is identifiable in limit if an optimal
learning algorithm can be guaranteed to converge upon
the correct language in the class given an arbitrary
sample of some size. Recent work on this topic has illus-
trated surprising insights on the expressive equivalence
of formal frameworks with very different surface char-
acteristics, and has provided powerful tools for imple-
menting constraint-based phonology in computationally
efficient finite state machines.
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4. NATURAL LANGUAGE PROCESSING AND
AUTOMATIC SPEECH RECOGNITION
(NLP/ASR)

Every time I fire a linguist, the performance of the speech
recognizer goes up. --Fred Jelinek (in Hirschberg, 1998)
There are three kinds of lies: lies, damn lies, and statistics.
--Benjamin Disraeli (Twain, 2006, p. 471)

Computational phonology is generally used to refer
to basic research. However, there is extensive overlap
with the fields of Natural Language Processing (NLP)
and Automatic Speech Recognition (ASR), since all
three deal with computations involving (representations
of) speech sounds. Despite the overlap, there is a certain
tension between the goals of the scientist and the goals
of engineers who wish to apply the science to solve real-
world problems, as revealed in Jelinek's oft-repeated
quip, above. This review will not address cutting-edge
work in NLP or ASR, since 'computational phonology'
is not generally used to describe this kind of work. Still,
current computational work owes a huge debt to NLP
and ASR for the application of statistical methods to
natural language. I will briefly describe two concepts
which originated fromNLP/ASR but which have spread
to computational linguistic in general.

4.1. Zipfian distributions

It seems trivial, almost to the point of banality, to
observe that some things happen more than others; for
example, some words are repeated more frequently than
others. However, the nature of the distribution can have
powerful consequences for language acquisition and
processing. It turns out that the variation in word frequen-
cies is not completely random; it follows what has come
to be known as a Zipfian distribution (Zipf, 1935, 1949).
This means that a small number of items have a large
frequency, and a large number of items have a small
frequency. It is also sometimes informally described as
'most events are rare'.

Zipfian distributions are found at every level of lin-
guistic structure. Baayen (2001) considers the implica-
tions of this fact for morphology. An essential point is
that for any natural language text, the probability of en-
countering a new item never drops to zero. Therefore,
a functioning model of language use must always allow
for unseen items. The reader might be surprised to learn
howmuch research does not provide for this. For exam-
ple, the best-known andmost-successful model of word
recognition, TRACE (Elman&McClelland, 1985), does
not have any explicit mechanism for handling so-called
Out-of-Vocabulary (OoV) items. Daland and Pierrehum-
bert (2011) found that even segmental diphones (a con-
sonant or vowel, followed by another consonant or
vowel) exhibit a Zipfian distribution in English. Daland
and Pierrehumbert go on to show that an English listener
gets enough input in one day to approximate the frequen-
cy distribution over (frequent) diphones, yet might still

encounter new pairs of speech sounds throughout their
life. The enormous range of variation in frequencies has
important but sometimes underappreciated implications
for how learners might acquire phonology.

4.2. Statistical models

As noted above, the goal of many NLP and ASR re-
searchers is to build language technologies that work,
rather than focusing on the cognitive principles that un-
derlie language use. Of course, those two goals are not
mutually exclusive, but they are not identical either. In
fact, the general experience of the NLP and ASR com-
munity has been that 'dumb' models with lots of training
data perform better than 'smart' models with less training
data:

I don't know how many of you work in IT have had this
experience, but it's really awfully depressing to spend a
year working on an interesting research idea and then
discover you can get a bigger BLEU score increase by,
say, doubling the size of your language model training
data. I see a couple of nodding heads. --Phillip Resnick
(in P. Brown & Mercer, 2013)

An example of a 'dumb' model in syntax is the
Markov/n-gram models that Chomsky (1956) attacked
as insufficient to explain various long-distance phenom-
ena. From the perspective of NLP/ASR researchers,
linguistic theory is good to the extent that it is useful
and necessary for building systems that work:

It's not that we were against the use of linguistics theory,
linguistic rules, or linguistic intuition.We just didn't know
any linguistics. We knew how to build statistical models
from very large quantities of data, and that was pretty
much the only arrow in our quiver.We took an engineering
approach and were perfectly happy to do whatever it took
to make progress. In fact, soon after we began to translate
some sentences with our crude word-based model, we re-
alized the need to introduce some linguistics into those
models... We replaced the words with morphs, and includ-
ed some naïve syntactic transformation to handle things
like questions, modifier position, complex verb tenses and
the like... Now this is not the type of syntactic or morpho-
logical analysis that sets the linguist's heart aflutter, but it
dramatically reduces vocabulary sizes and in turn improves
the quality of the EM parameter estimates... From our
point of view, it was not linguistics versus statistics; we
saw linguistics and statistics fitting together synergistical-
ly. --Peter Brown (in P. Brown & Mercer, 2013)

A crucial contribution of NLP/ASR has been the in-
sight that probabilistic approach to language modeling
is necessary for developing real-world applications.
Arguably, it is also inspiring a revolution in how we
conceptualize language acquisition, or at least phonolog-
ical acquisition.

This community has also developed machine-learn-
ing techniques that enable efficient estimation of model

Loquens, 1(1), January 2014, e004. eISSN 2386-2637 doi: http://dx.doi.org/10.3989/loquens.2014.004

What is computational phonology? • 13

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/


parameters. For example, commercial ASR technologies
like Nuance Dragon rely on an acoustic model which
relies on a 'dumb' Hidden Markov Model (HMM). An
HMM is a close relative of a probabilistic FSM, with
two key differences. First, the states themselves are la-
tent variables (in the sense that the model builder posits
that they exist, and they condition the model's output,
but their parameters/relationships to other model com-
ponents are learned during training). Second, emission
of a string is not directly associated state transitions;
rather, each state is associated with a probability distri-
bution over observations. The acoustic observations are
a time series {ot}t=1..M where each ot is some kind of
vector, typically generated by some kind of spectral
decomposition of overlapping time frames from the
waveform. For example, a simple HMM is shown in
(15):

In this case, the task is to parse an acoustic se-
quence by labeling each discrete time frame as belong-
ing to one of the categories 'C', 'V', or '<sil>' (silence).
The acoustic observations have four dimensions, rep-
resenting the absolute magnitude of the signal in the
band 2000-5000 Hz, the entropy per Hertz in this band
(a measure of aperiodicity), the absolute magnitude
of the signal in the band 5000-10000 Hz, and the en-
tropy per Hertz in this band. (Note that this type of
acoustic representation is quite different from what is
used in commercial applications. A concrete example
is given to help the reader conceptualize an HMM.
The parameters in (15) were not generated from actual
speech data; they are included only for concreteness.)
The solid lines represent state transitions, and the
numbers represent the associated probabilities. Self-

transitions take up the bulk of the probability in each
case since normally the same vowel/consonant is
spread over many observation frames. The 'emission
probability' boxes characterize the likelihood of emit-
ting the current observation ot given the posited state
st using a multi-dimensional normal distribution. For
example, the 'C' label is associated with relatively
lower amplitude and less periodicity than vowels in
the 2-5 kHz band, and relatively higher amplitude but
still less periodicity than vowels in the 5-10 kHz band.

Muchof theearly, seminalwork in these fields focused
on developing dynamic programming techniques to train
thesemodelsefficientlyfromlimitedorverylargeamounts
of training data. Especially well-known are the Viterbi
algorithm for finding the most likely sequence of states
given an observation sequence (Viterbi, 1967), and the
Baum-Welch(orforward-backward)algorithmforfinding
the unknown parameters of an HMM (Baum & Petrie,
1966; Jelinek, Bahl, & Mercer, 1975). These algorithms,
or modest adaptations/generalizations of them, are still
used in most or many NLP papers published today, as
well as in the finite-state OT methods described earlier
and elaborated in more detail in later sections.

The discussion of NLP/ASR is necessarily brief. As
emphasized throughout this discussion, NLP has made
significant contributions to what now might be called
computational phonology, although in practice NLP is
interested in engineering applications (such as ASR)
and is normally considered a separate field. The use of
statistical models has transformed cognitive modeling
in phonology, to which I turn next.

5. COGNITIVE MODELING

The advent of statistical models in NLP offered up
new avenues for more cognitively minded researchers.
Early examples of this include the work of the Parallel
Distributed Processing group, who formulated the
TRACEmodel of speech perception (Elman&McClel-
land, 1985) as well as a hotly-contested single-route
model of past tense formation (Rumelhart & McClel-
land, 1986). The 'connectionist' approach they employed,
emphasizing so-called Artificial Neural Networks
(ANNs), has largely been abandoned in contemporary
cognitive science, for reasons too complex to discuss
here. Nonetheless, the PDP group deserves credit for
ushering in a new era in cognitive science by attempting
to explicitly link (psycho-)linguistic theories with human
behavioral data.

5.1. Phonotactic and phonological learning

The bulk of cognitive computational modeling of
phonology that this author is aware of is concentrated
in the areas of phonotactic and phonological learning.
There are two key messages that this literature suggests
to me. The first is that a constraint-based approach to
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phonological learning makes sense from a range of
standpoints. The second is that a stochastic approach to
phonological variation makes sense from a range of
standpoints.

5.1.1. Factoring the learning problem

As nicely set forth in Hayes (2004), a constraint-
based approach makes sense of the empirical data we
see on phonological development. More specifically,
Hayes (2004) reviews a range of studies suggesting that
infants acquire significant aspects of the phonotactics
of their language by 9-11 months of age, while there is
no or little evidence of unambiguously phonological
alternations until 15-24 months of age. In a constraint-
based framework, this pattern can be captured by a the-
ory in which markedness constraints are learned early.
While Hayes (2004) does not claim that infants have no
command of faithfulness constraints, it seems intuitively
plausible that it is easier to learn about which surface
structures do and do not occur (phonotactics) than it is
to also learn about non-transparent relationships between
UR and SR.

5.1.2. Learnability proofs for constraints

Although it is in principle possible to reason about
acquisition within SPE-style rules, the nature of the OT
formalism has evidently been more amenable to formal
analysis. The advent of OT was followed in short order
by learning algorithms, and formal proofs of their effi-
cacy. For example, Tesar and Smolensky (2000) sum-
marize a large body of earlier work treating the phono-
logical acquisition problem from the perspective of OT.
One aspect of the learning problem is learning the pro-
duction grammar –the component which maps underly-
ing representations to fully specified surface representa-
tions. They give a formal proof of the 'correctness' of
an algorithm they refer to as Error-Driven Constraint
Demotion (EDCD), which solves this problem. That is,
if the learner is given correct underlying forms and
correct surface forms from an OT grammar with con-
straints C = {Ck}, EDCD probably converges to the
correct total ordering over C which generated the
learning data. Of course, the learning problem for infants
is more difficult –they must infer not only the grammar,
but the underlying forms and the correct surface forms
(including hidden structure). Tesar and Smolensky de-
scribe the process of assigning a fully specified surface
representation to an observable form as Robust Interpre-
tive Parsing (RIP; although Boersma, 2003, points out
this could simply be called perception). Tesar and
Smolensky further propose Lexicon Optimization, the
assumption that when multiple input forms map to the
same hypothesized surface representation, the most
faithful UR is selected. They show in a series of simula-
tions that this combination (EDCD+RIP+Lexicon Opti-

mization) correctly learns a significant majority of stress
patterns in a factorial typology, although there were
cases in which the learner got 'stuck', failing to converge
on any correct grammar.

The adoption of scalar-valued weights has opened
up additional analytic possibilities in constraint-based
learning. For example, Potts, Pater, Jesney, Bhatt, and
Becker (2010) showed that the simplex algorithm could
be used to identify weights for a Harmonic Grammar.
This provides a learnability proof for Harmonic Gram-
mar that is entirely analogous to the correctness proof
of Tesar and Smolensky's EDCD for OT, except that
Potts et al. employ a pre-existingmathematical approach
with a well-established pedigree. In a series of papers,
Magri (2012, in press) analyses the phonotactic learning
problem using a scalar-valued variant of OT in which
the winning input-output candidate is determined by a
total ordering of constraints, which is projected from
underlying scalar-valued constraint weights.Magri gives
bounds under which the use of scalar weights and error-
driven re-weighting is sufficient to render learning algo-
rithms tolerant to noise (i.e. occasional data points which
violate the grammar). However,Magri's work generally
deals with the grammar as a function, meaning that an
input must be mapped to the same output on every occa-
sion. Boersma and colleagues have shown that a
stochastic approach provides graceful handling not only
of noise, but of free variation. For example, Boersma
applied stochastic gradient ascent to a probabilistic
variant of OT (some readers may know this as the
Gradual Learning Algorithm). Boersma and Hayes
(2001) tested this algorithm on a number of empirical
phenomena, finding that it was able to handle not only
exceptional data points, but to accurately model genuine
free variation. A more comprehensive review of this
topic is given in Section 4 of Coetzee & Pater (2011).

5.1.3. Stochastic phonology

The work of Pierrehumbert and colleagues reflects
some of the advantages of adopting a statistical perspec-
tive in the study of phonology and phonological acqui-
sition. For example, Pierrehumbert (1994) conducted a
study of the triconsonantal clusters observed word-me-
dially in English. As a crude first pass, she proposed
that the expected occurrences of a medial cluster in
monomorphemes could be determined compositionally
from the probabilities of generating the cluster from a
syllable coda and a following syllable onset, e.g. E[lfr]
= |L|·Pr(l]σ)·Pr([σ fr) where |L| is the size of the
monomorphemic lexicon. Pierrehumbert found that of
the 8708 potentially grammatical medial clusters that
could be generated in this way, only 50 were actually
attested monomorphemically. Naively, one might
imagine this means there is a lot of work for linguistic
theory to do, explaining why so many possible events
don't occur. However, Pierehumbert pointed out, over
8500 of these 8708 clusters had an expected frequency
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below 1. In other words, a proper linguistic explanation
was only needed for the 150 or so triconsonantal clusters
which had expected frequencies well above 1, but ob-
served frequencies of 0. 'Chance' alone was enough to
explain the absence of most unattested clusters, alleviat-
ing the burden on linguists.

Coleman and Pierrehumbert (1997) further elaborat-
ed this idea by formalizing a syllable parser as a proba-
bilistic context-free grammar (a PCFG is a CFG like in
example (6), but with probabilities attached to the
rewrite rules). They added prosodic features to distin-
guish stressed from unstressed syllables, as well as initial
versus noninitial and final versus nonfinal syllables.
Coleman and Pierrehumbert validated their model
against human judgments from a nonce-word acceptabil-
ity task. They found that the aggregate acceptability of
their nonwords was almost perfectly correlated with the
log-probability their model assigned, a finding that has
since been replicated with numerous other probabilistic
models (Daland & Pierrehumbert, 2011). In addition to
comparing the model output to behavioral data, Pierre-
humbert and colleagues' work represents an early in-
stance of a critical aspect of computational cognitive
modeling –specifying a meaningful baseline, against
which the utility of a particular formal device can be
measured.

Another domain in which a stochastic approach has
had some success is in non-deterministicmorphophonol-
ogy. As mentioned above, the PDP group proposed an
influential connectionist model of past tense production
in English (Rumelhart &McClelland, 1986). This paper
was very polarizing, since it suggested that both regular
and 'irregular' morphophonology could be explained by
a single, analogical system. A number of researchers,
including Pinker and Marcus, proposed a dual-route
model in which regular morphology is calculated by a
rule-based grammar, while 'irregular' morphology is
calculated by an analogical system. Owing to the heated
rhetoric surrounding the issue and the number of papers
written on this topic (Albright &Hayes, 2003; Daugher-
ty & Seidenberg, 1992; Marcus, 1995; Marcus,
Brinkmann, Clahsen, Wiese, & Pinker, 1996; Pinker &
Prince, 1988; Plunkett &Marchman, 1991; to name just
a few), it has become known as the Past Tense Wars.
Although there is not space to review this fascinating
literature, it is mentioned here because cognitive compu-
tational modeling played such a prominent role in the
debate –formal models were implemented in computer
programs, which generated data that was then compared
to child and/or adult production. Partly as a result of
researchers' commitments to actual implementedmodels,
a number of important discoveries were made. These
included the observation that minority inflectional pat-
terns can be marginally productive (e.g. spling →
splung), the discovery of output-oriented processes (e.g.
irregulars like burnt share surface commonalities with
regularly inflected items, in this case the presence of a
word-final coronal stop that is not present in the verb
stem), and the discovery of 'islands of reliability' not

only in irregularly inflected patterns but also in regular
forms (for further discussion see Albright & Hayes,
2003).

5.1.4. Constraint-based stochastic phonology

Following the research program of Hayes (2004),
and the insight of Goldwater and Johnson (2003) that
Harmonic Grammar can be naturally extended to the
log-linear framework, Hayes &Wilson (2008) describe
and implement a phonotactic learner that is supplied
with a proto-lexicon (a list of wordforms) and a phono-
logical feature set. The feature set defines a set of natural
classes, followingmainstream phonological theory. The
software then considers grammars consisting of 'n-gram
constraints', e.g. the bigram constraint '*[-son,+vcd][-
son,-vcd]' might prohibit a sequence of obstruents O1O2
in which O1 is voiced while O2 is voiceless. For a given
set of constraints, the software uses the finite-state
methods of Riggle (2004, 2009) to rapidly determine
the optimal weights. The grammar is built and pruned
iteratively, by selecting new constraints from a very
large hypothesis space according to various search
heuristics, and then retaining those constraints which
pass a complexity-penalized statistical criterion for im-
proving the model fit to the training data. Hayes &
Wilson (2008) demonstrate that the grammars learned
by the model exhibit various empirically desirable
properties. For example, when trained on onset clusters
in the English lexicon, it assigns gradient well-formed-
ness scores to legal and unattested onset clusters, which
correlate quite tightly with the aggregate judgments of
schoolchildren on the same onsets as reported in the
body of the paper. Further computational work studying
this model's predictions for sonority sequencing is given
in Daland and Pierrehumbert (2011) and Hayes (2011).
Hayes and White (2013) use the model as a baseline to
test for 'phonetic naturalness' effects in learning, i.e.
whether two putative constraints which receive equal
support from the lexicon, but differ in the extent of
phonetic motivation, are treated equally by adult English
speakers in rating novel forms.

The work of Jarosz (2006, 2013) has concentrated
particularly upon the problem of learning underlying
representations in stochastic constraint-based phonology.
For example, Jarosz (2013) contains a careful analysis
of why Robust Interpretive Parsing (Tesar & Smolensky,
2000) fails in particular cases; among other things,
Jarosz concludes that encoding a probability distribution
across outputs allows the learner to recover from the
'traps' that caused Tesar and Smolensky's algorithm
(which was cast in categorical, non-stochastic OT) to
fail.

This moment is a very exciting one in the theory of
phonological acquisition. The fieldwide shift to con-
straint-based theories has opened up multiple new lines
of attack on the acquisition problem. As Hayes (2004)
pointed out, the constraint-based approach is compatible
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with the developmental trajectory that is actually ob-
served, under the interpretation that children set the
relative prioritization of markedness constraints rather
early in development. Nearly all of the papers reviewed
in this section represent significant insights onto the
acquisition problem, that would not have been possible
under SPE-style rules.While there are no doubt addition-
al subtleties in this approach that have not been discov-
ered, the rather rapid progress that has been made in the
last 10 years on phonological acquisition in particular
arguably outstrips the progress that had been made in
the preceding 30-40 years during which SPE-style rules
were the dominant phonological framework.

One part of what has made this progress possible is
that the constraint-based approach lends itself naturally
to problem representations that are similar, and adaptable
to, problem representations in machine learning. The
more that linguistic problems can be represented like
problems in other scientific fields, the more we linguists
are able to leverage the powerful computational tools
that have been developed to solve them, such as maxi-
mum entropy models (Goldwater & Johnson, 2003;
Hayes &Wilson, 2008; Jarosz, 2013). At the same time,
the adoption of machine learning methods promises to
help focus phonological theory on the substantive com-
ponents which it adds, over and above theory-innocent
machine learning methods. For example, Hayes repeat-
edly makes the point that a kitchen-sink approach to
constraints fails with toy languages and otherwise suc-
cessful learning algorithms (Hayes, 2004; Hayes &
White, 2013). Analogously, it is common lore amongst
theoretical phonologists that a successful OT analysis
can be sunk by the wrong constraint, and this holds
equally true in a computational setting where some of
the candidate enumeration and scoring is done rigorously
by the computer.

We can expect further, rapid progress on this domain
in particular; the author is in communication with a
number of scholars doing new and interesting things on
this topic at this very moment. In the next subsection,
we turn to another area where computational modeling
has had a significant impact on rapid progress, word
segmentation.

5.2. Word segmentation

Word segmentation is the perceptual process
whereby listeners parse the speech stream into word-
sized units. As evident from listening to speech in an
unfamiliar language, many words are not followed by
a silence or other language-general auditory boundary
cue. However, fluent and normally-hearing listeners
epiphenomenally report the sensation of hearing discrete
words during speech perception, except under the most
challenging listening conditions. Word segmentation
refers to the cognitive process or processes that have
applied between the auditory level and the listener's
percept, of discrete words in a sequence.

One of the earliest computational approaches to
word segmentation was the seminal TRACE model
of speech perception, published by the already-men-
tioned PDP research group (Elman & McClelland,
1985). In this model, the listener is equipped with a
bank of phonological features, a phoneme (or allo-
phone) inventory, and an inventory of words. The
'auditory input' is represented as a time-varying vector
of feature values. The model is a specific instance of
a general class of models, quite popular in the psy-
cholinguistic literature, known as 'spreading activa-
tion': the perceptual information from the 'bottom' (in
this case, auditory featural) level percolates up to
'higher' levels (phonemes, and then words), and in
some cases 'top-down' information also percolates
downward. As a result, the 'output' of the model is a
time-varying vector of word activations. The model
is deemed to have successfully parsed a sentence if at
the end of the sentence, all of the sentence's words are
highly activated, and no other words are highly acti-
vated.

As Strauss, Harris, and Magnuson (2007) write:
Although TRACEwas introduced 20 years ago, it contin-
ues to be vital in current work in speech perception and
SWR. Despite well-known limitations (acknowledged in
the original 1986 article and discussed below), TRACE
is still the best available model, with the broadest and
deepest coverage of the literature... TRACE has proved
extremely flexible and continues to spur new research and
provide a means for theory testing. For example, it has
provided remarkably good fits to eyetracking data from
recent studies of the time course of lexical activation and
competition (Allopenna, Magnuson, & Tanenhaus, 1998;
Dahan, Magnuson & Tanenhaus, 2001), including subtle
effects of subphonemic stimulus manipulations (Dahan,
Magnuson, Tanenhaus, & Hogan, 2001). (p. 20)

TRACE is mentioned here because, among other
things, it has been claimed to account for word segmen-
tation. The idea is that if you recognize the words
themselves, the epiphenomenal percept of word segmen-
tation has been explained. However, as hinted above,
TRACE is not necessarily a viable model of acquisition.
In particular, the model can only recognize words in its
lexicon; no model-internal means is available for pro-
cessing novel words and adding them to the lexicon. As
is generally acknowledged in the literature on the acqui-
sition of word segmentation, this is an essential aspect
of the larger problem, since experimental evidence
suggests that infants are able to segment previously un-
known words, and indeed, this is the majority of new
words that are learned (for argumentation see Daland
& Pierrehumbert, 2011, and Goldwater, Griffiths, &
Johnson, 2009).

Subsequent computational research on this topic
employed corpus studies in combination with connec-
tionist modeling (Aslin, Woodward, LaMendola, &
Bever, 1996; Cairns, Shillcock, Chater, & Levy, 1997;
Christiansen, Allen, & Seidenberg, 1998; Elman, 1990),
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with the promising result that relatively simple neural
network models could predict word boundaries without
necessarily recognizing the neighboring words. Howev-
er, owing to the well-known difficulties with interpreting
the internal representations of connectionist networks,
this line of research stalled shortly after the initial wave,
essentially because it proved impossible to reason from
the modeling results to how infants actually solved the
problem. Although this is a more general issue with
modeling research, it proved especially acute here be-
cause it was not even possible to determine how the
models solved the problem.

Nonetheless, the finding that prelexical segmentation
was computationally practical had important conse-
quences. Experimental evidence began pouring in around
this time for phonotactic segmentation,meaning segmen-
tation based on (knowledge of) likely, unlikely but per-
missible, and impermissible sequences within and across
prosodic units such as words (e.g. Jusczyk, Hohne, &
Baumann, 1999; Jusczyk, Houston, &Newsome, 1999;
Mattys & Jusczyk, 2001; Saffran, Aslin, & Newport,
1996; for a more comprehensive review see Daland &
Pierrehumbert, 2011). The experimental evidence shows
quite clearly that infants can and do extract new word-
forms from the speech stream, even from 'difficult' posi-
tions such as phrase-medially when there are good
phonotactic cues.

This prompted a wave of computational models
which attempted to solve the segmentation problem us-
ing only phonotactic knowledge. Early instances include
Xanthos (2004) and Fleck (2008), who used utterance
boundary information to infer lexical phonotactic prop-
erties, as originally suggested by Aslin, Woodward,
LaMendola, and Bever (1996). A probabilistically rigor-
ous bootstrapping model was formulated and tested in
Daland and Pierrehumbert (2011) using diphones, se-
quences of two segments; in English, individual di-
phones typically have positional distributions that are
highly skewed toward being either word-internal, or
word-spanning, so that this phonotactic cue is an excel-
lent one for word segmentation. Daland and Pierrehum-
bert advocate for a phonotactic approach to word seg-
mentation because phonotactic segmentation becomes
efficacious as soon as infants possess the necessary
phonetic experience, around 9 months, consistent with
the developmental evidence. Moreover, Daland and
Pierrehumbert show that the phonotactic approach is
robust to conversational reduction processes that occur
in English. For example, it is well-known that word-final
coronal stops are often deleted in conversational English;
Daland and Pierrehumbert show that this kind of process
causes only a modest decrement to their phonotactic
model, but has rather more drastic effects on lexical
models which use wordform recognition to do word
segmentation (since current-generation lexical models
assume the surface pronunciation of a wordform is its
canonical and only form, their distributional assumptions
are violated by speech containing pronunciation varia-
tion). Adriaans and Kager (2010) propose an analogous

model in the framework of OT, which induces segmen-
tation constraints from featural co-occurrence informa-
tion.

The phonotactic approach has not panned out as well
as its proponents originally hoped, however. As the
empirical coverage widened to other languages, it be-
came clear that phonotactic approaches always worked
best for English (vs. Korean: Daland & Zuraw, 2013;
vs. Spanish and Arabic: Fleck, 2008; vs. Japanese:
Fourtassi, Börschinger, Johnson, & Dupoux, 2013; et
alia). Moreover, the assumption (based on maternal
questionnaires; Dale & Fenson, 1996) that 9-month-old
infants barely knew any words was contradicted by ex-
perimental evidence (e.g. Mandel, Jusczyk, & Pisoni,
1995) suggesting that infants knew some wordforms as
early as 4-6 months, even if they were not necessarily
aware of the corresponding meanings.

In the meantime, the phonotactic approach to model-
ing word segmentation was overshadowed by the
Bayesian, lexical approach developed by Goldwater,
Johnson, and colleagues. This approach, which had its
roots in the computational models of Batchelder (2002)
and Brent and Cartwright (1996), returns to the view of
word segmentation as an epiphenomenon of word
recognition popularized in TRACE, but departs from
TRACE in various ways. Most crucially, the models
included means to add previously unencountered word-
forms to its lexicon ('learn new words'); also, Brent and
Cartwright (1996) defined an explicit and probabilistic
mathematical objective which their model was supposed
to maximize. Thus, Brent and Cartwright advocated for
framing the segmentation problem at Marr's computa-
tional level ('What is the mathematical characterization
of the function that humans optimize?') rather than the
algorithmic level ('How do humans find the optimal so-
lution for the function that they are optimizing?').
Goldwater, Griffiths, and Johnson (2009) extend the
early work of Brent and Cartwright to a more general
setting, factoring the learning problem so as to enable
efficient optimization, reframing the objective in a
Bayesian setting (rather than the related, but more re-
stricted Minimal Description Length approach used by
Brent and Cartwright; for discussion and analysis see
Goldwater, 2006), and extending the data model so as
to be both more powerful and more flexible. For exam-
ple, Goldwater et al. (2009) show that better segmenta-
tion is predicted if infants attend to dependencies be-
tween words, a prediction that was retroactively con-
firmed by an experimental study showing that 6-month-
olds use their own names to segment the following word
(Bortfeld, Morgan, Golinkoff, & Rathbun, 2005).

Numerous authors have followed up on Goldwater
and colleagues' seminal work. For example, Blanchard,
Heinz, and Golinkoff (2010) adapt the model in Gold-
water et al. (2009) by including an incremental n-gram
phonotactic model, whose parameters are discovered
during the learning process. They found a significant
but very modest gain in performance, suggesting that
much of the problem-solving power of Goldwater's
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model is actually located in the prior distribution (owing
to reasons of space, I am unable to describe this model
in more detail here; the reader is encouraged to consult
the original paper for clear exposition). Pearl & col-
leagues have experimented with the idea that 'adding
performance back in' to computational-level models can
yield more psycholinguistically valid (and sometimes
more accurate) performance, by incorporating limited
short-term memory and/or long-term forgetting into
Goldwater-like models (Pearl, Goldwater, & Steyvers,
2011; Phillips & Pearl, 2012). Lignos (2012) presents
an incremental model with a slightly different objective
than in Goldwater et al. (2009); an innovation is the use
of a lexical filter which prevents low-confidence words
from being incorporated into the model's lexicon. A
variety of lexical filters have been used in previous
work, including especially the constraint that a word
must contain a vowel (Brent & Cartwright, 1996) or that
it must have a certain minimal frequency (Daland &
Pierrehumbert, 2011; see Ch. 5 of Daland, 2009, for
modeling, analysis, and discussion of 'error snowballs'
and Pearl et al., 2011, for argumentation that memory
limitations help prevent error snowballs by forgetting
early misparses).

The rapid, intense progress that has taken place in
our understanding of word segmentation acquisition has
been driven by an interplay and dialogue between a va-
riety of research traditions, most notably developmental
psycholinguists (Jusczyk,Mattys,Morgan, Saffran, etc.)
and cognitive computationalmodelers (Daland, Goldwa-
ter, Johnson, Pearl, etc.), as well as researchers who are
able to mix these methodologies (Aslin, Kager, Swing-
ley, etc.). This is, in the author's humble opinion, a
wonderful thing, and it is to be hoped that this example
spreads to other domains.

More generally, the impact of cognitive modeling
cannot be understated in linguistic theory and in cogni-
tive science more generally. The interaction between
domain-general and domain-specific representations
and learning algorithms is a topic of perennial interest,
and computational modeling has and continues to shed
new light on the complexities. Modeling has in some
cases clearly ruled out hypotheses as to cognitive pro-
cesses that seemed a priori quite plausible; while in
other cases it has shown that two formalisms which
might naively be supposed tomake completely divergent
predictions actually offer statistically indistinguishable
explanations for the very same data set (e.g. Jarosz,
2013). Just as with formal language theory for frame-
work comparison, it is safe to predict that there will be
more of this work in the future, not less. In the next and
final content section of this review I turn briefly to the
topic of corpus studies.

6. CORPUS STUDIES

A corpus study is any study in which the central
data consists of a 'corpus' –a body of text representing

some aspect of language use– and the central analysis
consists of counting elements in the text and doing
statistical comparisons. Corpus studies flourished in
the early days of the CHILDES database (MacWhin-
ney, 2000), an early crowdsourced project in which
(usually orthographic) child-related corpora were as-
sembled together under the auspices of a single re-
search group. For example, much of the early work
on morphological acquisition focused on order-of-
morpheme acquisition, e.g. comparing the time and
frequency of -ing, -ed, and other English functional
morphemes (R. Brown, 1973).

Owing to the orthographic coding of most corpora,
and the phonologically non-transparent nature of English
(the analysis language for most corpus-based research
to date), the bulk of corpus work has focused on mor-
phology and syntax rather than phonology. Nonetheless,
there is a significant body of corpus work in phonology.
I will limit the review to a few examples, as much of
this work is of a similar character.

Two studies which address phenomena of interest
to theoretical phonology were done by Zuraw and col-
leagues. Zuraw (2006) collected a corpus of Tagalog
loanwords using Internet blogs. Loanwords were desir-
able for this study since the research question pertained
to the productivity of intervocalic tapping, and the pro-
ductivity of phonological patterns from high-frequency
native items is confounded with lexicalization. Using
this corpus, Zuraw examined howmorphological status
interacts with a variable phonological process; she found
interesting differences between the prefix+stem and
stem+enclitic cases, which there is not space to discuss
here. In a conceptually similar study, Hayes, Zuraw,
Siptár, and Londe (2009) investigate the vowel harmony
pattern of Hungarian, which is largely categorical, but
exhibits variation in particular cases (notably, when an
initial back vowel is followed by one or more 'neutral'
vowels, which do not undergo acoustically obvious
harmony processes themselves). Hayes et al. (2009) note
several 'phonetically unnatural' aspects of the harmony
system which appear, at least statistically, to not be due
to chance alone (for example, associations between
consonant place and vowel height that condition the
application rate). They go on to assess the productivity
of these 'unnatural' patterns, and compare them to the
productivity of 'natural' patterns with similar statistical
support, finding that Hungarian native speakers exhibit
knowledge of both, but apparently exhibit more produc-
tivity for the 'natural' patterns (see the paper for details).

Larsen and Heinz (2012) present a corpus study, also
of vowel harmony, but in Korean, and particularly in
its onomatopoetic sub-lexicon. Their analysis confirms
some aspects of previous accounts of this sub-lexicon,
but add nuances, e.g. that the harmony class of a vowel
may depend on its position in the word. Daland (2013)
presents a corpus study of adult- versus child- directed
speech, in which he compares the relative frequency of
different segmental classes. Daland argues against the
claim that adults tailor the segmental frequencies in their
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child-directed speech, by showing that the moment-to-
moment variation in segmental frequencies dwarfs the
putative aggregate differences that had been reported in
previous research.

In all of these corpus studies, researchers take an
existing corpus (or create one) and then analyze it and
compare the counts against the predictions of some ex-
isting phonological theory or account. Corpus studies
are relatively easy to conduct and replicate once the
corpus has been created, so they are an appealing
methodology. However, it is the norm to supplement
corpus studies with additional computational studies
and/or experimentation, so as to provide converging
evidence. There are many corpus studies that could have
been reviewed here, and I selected a mere handful to il-
lustrate the 'flavor' of this style of research. (A number
of corpus studies were also reviewed in the cognitive
modeling section earlier). This style of research is re-
viewed here, at least briefly, because it is considered to
be 'computational phonology' by many researchers, in-
cluding specialists on language acquisition.

7. SUMMARY AND CONCLUSIONS

In this paper I have reviewed a number of sub-fields
which I or close colleagues consider to be 'computational
phonology'. I began with formal language theory as it
is specifically applied to phonology. After reviewing
the fundamentals, I discussed recent theoretical work
of interest, including the use of equivalencies between
formal languages and logics to compare formal frame-
works (like SPE and OT), as well as the application of
finite-state methods for efficient optimization of large-
scale constraint-based models. Next, I briefly discussed
the influence of NLP/ASR (Natural Language Process-
ing andAutomatic SpeechRecognition) on computation-
al phonology; although those fields are not considered
computational phonology, cognitive scientists owe a
huge debt to these fields for introducing and demonstrat-
ing the utility of probabilistic models for natural lan-
guage problems. In the section of the paper that corre-
sponds the most closely to my own research interests,
I discussed cognitive computationalmodeling in general,
and focused in particular on computational approaches
to phonological and phonotactic acquisition, as well as
the acquisition of word segmentation by infants and
children. Finally, I very briefly discussed corpus studies;
there is a long tradition in corpus work and it is a very
general methodology, so I only gave a few examples to
illustrate what it can and cannot do.

Stepping back from the many and important details
that go into making any one particular study, it is time
to revisit the question with which this article began:
What is computational phonology? Let us begin with
what is common. As claimed in the introduction, many
or most of the works reviewed above draw upon a
common foundation of formal language theory. For ex-
ample, some of the most exciting work on cognitive

modeling of phonological acquisition makes use of fi-
nite-state OT (Hayes & Wilson, 2008). Similarly, most
of the work on computational phonology relies on a
shared body of methodological knowledge about corpus
linguistics. For example, it is nearly always necessary
to preprocess a corpus for one's particular research
needs.Moreover, the Natural Language Processing field
has repeatedly and forcefully demonstrated the dangers
of overfitting; it is now received wisdom in this field
that generalization must be assessed by testing on a
different data set than the model was trained on (except
in certain cases of unsupervised learning). Nearly all of
the work reviewed above in cognitive computational
modeling deals either with a corpus of phonological
data, or with behavioral results from a 'corpus' of stimuli,
or both. Finally, the bulk of the studies reviewed here
deal specifically with first language acquisition (al-
though, to be fair, that partially reflects the author's in-
terests, in addition to the inherent biases of the field).
This is quite a bit of shared knowledge andmethodolog-
ical commonality. However, if we examine the research
questions that each subfield asks, despite the fact that
there is a general preoccupation with language acquisi-
tion, we still see a greater amount of variation than is,
I think, common for a coherent field.

Within formal language theory, the pursuit is really
not of empirical phenomena that do or don't occur in
natural languages; rather, the goal is to understand
and elucidate the formal relationships between various
formal models of 'language'. This subfield has largely
resisted probabilistic approaches, and it has concen-
trated on formal restrictions on the generative capacity
of formalmodels (such as regular versus context-free),
at the expense of substantive restrictions (such as the
implicational universal that words with consonant
onsets are strictly less marked than onsetless words).
A large amount of work in this field is devoted to ac-
quisition, but it tends to proceed in a proof-based or
algorithmic manner, asking if learning algorithm A is
guaranteed to learn every language L in a given class.
The psychological plausibility of the learning assump-
tions is not always a very important concern to such
researchers; rather they are interested in themathemat-
ical and logical relationships between A and L.

Within Natural Language Processing (NLP), the goal
is to solve real-world engineering problems, often ones
in which money can be made. For example, it is worthy
and important to translate documents from resource-rich
languages like English to high information-demand
languages (such asMandarin Chinese). It is also worthy
and important to translate documents from languages
whose speakers produce goods and technologies (like
Mandarin Chinese) to languages whose speakers con-
sume goods and technologies (like English). Translators
work slowly and must be paid a considerable amount
of money; there is a lot of money to be made and saved
in developing good machine translation. In this sort of
application, the formal properties of a model are of in-
terest only insofar as they impact the ultimate perfor-
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mance of the system as a whole. There are of course
researchers whose interests span both NLP and more
basic science, including researchers who believe that
understanding the way humans do language may result
in better NLP, and soon. Nonetheless, the field as a
whole is oriented toward developing and applying statis-
tical models which solve 'real-world' problems. There
are many and interesting problems in this field, which
this author is too distant from to review in the detail they
deserve here. It is quite clear, however, that the types
of problems this field is concerned with are quite differ-
ent than the rather abstract questions that preoccupy
formal language theorists.

In cognitive computational modeling, the goal is
more specifically to elucidate how humans actually do
some particular linguistic task. This is related to, but
crucially different from, the formal language theory ap-
proach. At the risk of oversimplifying considerably, one
might put it this way: formal language theory asks,
“What does model X do?”; cognitive modelers ask, “Do
humans do it like model X?”. That is, in this field,
computational researchers are concerned much more
with psychological plausibility, and less with the abstract
structure of the problem space. It is no surprise, then,
that computational research in this field responds and
is responded tomore tightlywith developmental research
on language acquisition.

My goal, in reviewing these different subfields, is
not to claim that one is superior to another. Rather, it
has been to illustrate the rich tapestry of human thought
that falls under the broad umbrella term 'computational
phonology'. There are strands that connect each of these
subfields, even as the core concerns differ from re-
searcher to researcher and subfield to subfield. Compu-
tational phonology is getting bigger and bigger, and
fragmenting more with each passing year. But, too, we
are learning more and more.
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